当前位置: X-MOL 学术Mater. Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A 3D-printing method of fabrication for metals, ceramics, and multi-materials using a universal self-curable technique for robocasting
Materials Horizons ( IF 13.3 ) Pub Date : 2019-12-12 , DOI: 10.1039/c9mh01690b
Danwei Zhang 1, 2, 3, 4 , Win Jonhson 1, 2, 3, 4 , Tun Seng Herng 1, 2, 3, 4 , Yong Quan Ang 1, 2, 3, 4 , Lin Yang 1, 2, 3, 4 , Swee Ching Tan 1, 2, 3, 4 , Erwin Peng 1, 2, 3, 4 , Hui He 5, 6, 7, 8 , Jun Ding 1, 2, 3, 4
Affiliation  

Ceramics and metals are important materials that modern technologies are constructed from. The capability to produce such materials in a complex geometry with good mechanical properties can revolutionize the way we engineer our devices. Current curing techniques pose challenges such as high energy requirements, limitations of materials with high refractive index, tedious post-processing heat treatment processes, uneven drying shrinkages, and brittleness of green bodies. In this paper, a novel modified self-curable epoxide–amine 3D printing system is proposed to print a wide range of ceramics (metal oxides, nitrides, and carbides) and metals without the need for an external curing source. Through this technique, complex multi-material structures (with metal–ceramic and ceramic–ceramic combinations) can also be realized. Tailoring and matching the sintering temperatures of different materials through sintering additives and dopants, combined with a structural design providing maximum adhesion between interfaces, allow us to successfully obtain superior quality sintered multi-material structures. High-quality ceramic and metallic materials have been achieved (e.g., zirconia with >98% theoretical density). Also, highly conductive metals and magnetic ceramics were printed and shaped uniquely without the need for a sacrificial support. With the addition of low molecular weight plasticizers and a multi-stage heat treatment process, crack-free and dense high-quality integrated multi-material structures fabricated by 3D printing can thus be a reality in the near future.

中文翻译:

使用通用自固化技术进行机械浇铸的金属,陶瓷和多种材料的3D打印制造方法

陶瓷和金属是构建现代技术的重要材料。生产具有良好机械性能的复杂几何形状的此类材料的能力可以彻底改变我们设计设备的方式。当前的固化技术提出了挑战,例如高能量要求,高折射率材料的局限性,繁琐的后处理热处理工艺,干燥收缩不均匀以及生坯的脆性。在本文中,提出了一种新颖的改良型自固化环氧-胺3D打印系统,无需外部固化源即可打印各种陶瓷(金属氧化物,氮化物和碳化物)和金属。通过这种技术,还可以实现复杂的多材料结构(具有金属-陶瓷和陶瓷-陶瓷的组合)。通过烧结添加剂和掺杂剂来调整和匹配不同材料的烧结温度,并结合提供界面之间最大附着力的结构设计,使我们能够成功获得优质的烧结多材料结构。实现了高质量的陶瓷和金属材料(例如理论密度> 98%的氧化锆)。而且,无需牺牲支撑,就可以对高导电性金属和磁性陶瓷进行独特的印刷和成型。通过添加低分子量增塑剂和多阶段热处理工艺,在不久的将来,通过3D打印制造的无裂纹且致密的高质量集成多材料结构将成为现实。
更新日期:2019-12-12
down
wechat
bug