当前位置: X-MOL 学术Mater. Charact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Significant influence of rolling modes on martensitic transformation, microstructural evolution and texture development in a 304 stainless steel
Materials Characterization ( IF 4.7 ) Pub Date : 2020-01-01 , DOI: 10.1016/j.matchar.2019.110073
Guosheng Sun , Linxiu Du , Jun Hu , Bin Zhang

Abstract A 304 stainless steel was deformed by two different rolling modes (unidirectional cold rolling and cross rolling) at room temperature. The effects of rolling modes on martensitic transformation, microstructural evolution, and texture development were investigated. The results showed that martensitic transformation was enhanced significantly by cross rolling. The underlying reason was the increase in the amounts of nucleation sites for α′-martensite, i.e., intersections of shear bands. The transformation of austenite to martensite was found to be followed the sequence of γ → e → α′ regardless of rolling modes. Rolling modes had great influences on deformation textures in both the remaining austenite and α′-martensite. For unidirectional cold-rolled samples, the main texture components of deformed austenite were Brass ({110}〈112〉) and S ({123}〈634〉) texture, while the α′-martensite phase exhibited {112}〈110〉, {223}〈121〉, and {554}〈225〉 orientations. However, ζ-fiber (〈110〉//ND) component, which was characterized by oscillation between Brass and G/B ({110}〈111〉) texture, was formed in remaining austenite during cross rolling, accompanied by a weakening of S component. Meanwhile, the α′-martensite phase in cross-rolled samples exhibited η-fiber (〈001〉//ND), and the dominant texture components were Rotated Cube ({001}〈110〉) and {001}〈160〉. The stability of the orientations during cross rolling can be responsible for texture development in both austenite and α′-martensite.

中文翻译:

轧制方式对304不锈钢马氏体相变、显微组织演变和织构发展的显着影响

摘要 一种304不锈钢在室温下通过两种不同的轧制方式(单向冷轧和交叉轧制)进行了变形。研究了轧制模式对马氏体转变、显微组织演变和织构发展的影响。结果表明,交叉轧制显着促进了马氏体相变。根本原因是α'-马氏体的成核位点数量增加,即剪切带的交叉点。无论轧制模式如何,奥氏体向马氏体的转变都遵循γ→e→α'的顺序。轧制模式对残余奥氏体和α'-马氏体的变形织构有很大影响。对于单向冷轧样品,变形奥氏体的主要织构成分为黄铜({110}〈112〉)和S({123}〈634〉)织构,而α′-马氏体相呈现{112}〈110〉、{223}〈121> , 和 {554}<225> 方向。然而,以黄铜和 G/B({110}<111>)织构之间振荡为特征的 ζ-纤维 (<110>//ND) 成分在交叉轧制过程中形成于残余奥氏体中,伴随着弱化S 组件。同时,交叉轧制样品中的α'-马氏体相表现出η-纤维(〈001〉//ND),主要的织构成分是旋转立方体({001}〈110〉)和{001}〈160〉。交叉轧制过程中取向的稳定性是奥氏体和 α'-马氏体织构发展的原因。以黄铜和G/B({110}<111>)织构之间振荡为特征的ζ-纤维(〈110〉//ND)成分在交叉轧制过程中在残余奥氏体中形成,伴随着S成分的减弱. 同时,交叉轧制样品中的α'-马氏体相表现出η-纤维(〈001〉//ND),主要的织构成分是旋转立方体({001}〈110〉)和{001}〈160〉。交叉轧制过程中取向的稳定性是奥氏体和 α'-马氏体织构发展的原因。以黄铜和G/B({110}<111>)织构之间振荡为特征的ζ-纤维(〈110〉//ND)成分在交叉轧制过程中在残余奥氏体中形成,伴随着S成分的减弱. 同时,交叉轧制样品中的α'-马氏体相表现出η-纤维(〈001〉//ND),主要的织构成分是旋转立方体({001}〈110〉)和{001}〈160〉。交叉轧制过程中取向的稳定性是奥氏体和 α'-马氏体织构发展的原因。主要的纹理成分是旋转立方体({001}〈110〉)和{001}〈160〉。交叉轧制过程中取向的稳定性是奥氏体和 α'-马氏体织构发展的原因。主要的纹理成分是旋转立方体({001}〈110〉)和{001}〈160〉。交叉轧制过程中取向的稳定性是奥氏体和 α'-马氏体织构发展的原因。
更新日期:2020-01-01
down
wechat
bug