当前位置: X-MOL 学术Optica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints
Optica ( IF 10.4 ) Pub Date : 2019-12-12 , DOI: 10.1364/optica.6.001515
Wenwen Li , Zhishen Tong , Kang Xiao , Zhentao Liu , Qi Gao , Jing Sun , Shupeng Liu , Shensheng Han , Zhongyang Wang

Single-molecule, localization-based, wide-field nanoscopy often suffers from low time resolution because the localization of a single molecule with high precision requires a low emitter density of fluorophores. In addition, to reconstruct a super-resolution image, hundreds or thousands of image frames are required, even when advanced algorithms, such as compressive sensing and deep learning, are applied. These factors limit the application of these nanoscopy techniques for living cell imaging. In this study, we developed a single-frame, wide-field nanoscopy system based on ghost imaging via sparsity constraints (GISC), in which a spatial random phase modulator is applied in a wide-field microscope to achieve random measurement of fluorescence signals. This method can effectively use the sparsity of fluorescence emitters to enhance the imaging resolution to 80 nm by reconstructing one raw image using compressive sensing. We achieved an ultrahigh emitter density of ${143}\;\unicode{x00B5} {{\rm m}^{ - 2}}$ while maintaining the precision of single-molecule localization below 25 nm. We show that by employing a high-density of photo-switchable fluorophores, GISC nanoscopy can reduce the number of sampling frames by one order of magnitude compared to previous super-resolution imaging methods based on single-molecule localization. GISC nanoscopy may therefore improve the time resolution of super-resolution imaging for the study of living cells and microscopic dynamic processes.

中文翻译:

基于稀疏约束的幻影成像的单帧广域纳米显微镜

单分子,基于定位的广域纳米显微镜通常受时间分辨率低的困扰,因为单个分子的高精度定位需要较低的荧光团发射体密度。另外,为了重建超分辨率图像,即使应用了诸如压缩感测和深度学习之类的高级算法,也需要成百上千个图像帧。这些因素限制了这些纳米技术在活细胞成像中的应用。在这项研究中,我们开发了基于基于稀疏约束(GISC)的幻影成像的单帧,宽视野纳米显微镜系统,其中在宽视野显微镜中应用了空间随机相位调制器,以实现对荧光信号的随机测量。通过使用压缩感测重建一个原始图像,该方法可以有效地利用荧光发射器的稀疏性将成像分辨率提高到80 nm。我们实现了超高的发射极密度$ {143} \; \ unicode {x00B5} {{\ rm m} ^ {-2}} $,同时保持单分子定位的精度低于25 nm。我们表明,与以前基于单分子定位的超分辨率成像方法相比,通过采用高密度的光开关荧光团,GISC纳米显微镜可以将采样帧的数量减少一个数量级。GISC纳米显微镜因此可以提高用于研究活细胞和微观动态过程的超分辨率成像的时间分辨率。
更新日期:2019-12-21
down
wechat
bug