当前位置: X-MOL 学术J. Phys. Chem. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Regulating Ion Transport in a Nanochannel with Tandem and Parallel Structures via Concentration Polarization.
The Journal of Physical Chemistry Letters ( IF 5.7 ) Pub Date : 2020-01-07 , DOI: 10.1021/acs.jpclett.9b03016
Zeng-Qiang Wu 1 , Zhong-Qiu Li 1 , Yang Wang 1 , Xing-Hua Xia 1
Affiliation  

The unique phenomena of ion selectivity and ion current rectification (ICR) in nanofluidics have been widely used to construct bioinspired channels and organs, sensors, and power generators. However, the excellent performance of a single nanochannel does not show a linear increase when it is scaled up into multiple nanochannels in tandem and parallel structure, and in some cases, it even shows a reverse trend. Understanding of this scaling-up inconsistency in nanofluidics is essential to the design of functional devices. Here, we provide a method for investigating the ion transport properties in multiple nanochannels in tandem and parallel connections. We find that interfacial resistance caused by ion concentration polarization (ICP) in tandem and parallel nanochannels has a significant impact on ICR, showing a nonlinear scaling-up feature with the tandem number and a decreased trend with the parallel number, which is not expected in electronic devices. We further verify that it is feasible to regulate ion transport in tandem and parallel nanochannels by adding gap distances between nanochannels in tandem and parallel structures to decouple the ICP region between nanochannels. This study provides fundamental insights into the ion transport properties in nanofluidic circuits, which hold promise for the design of high-performance nanofluidic devices in the fields of separation, energy, and sensors.

中文翻译:

通过浓度极化调节具有串联和平行结构的纳米通道中的离子输运。

纳米流体中离子选择性和离子电流整流(ICR)的独特现象已被广泛用于构建受生物启发的通道和器官,传感器和发电机。但是,当单个纳米通道以串联和平行结构按比例放大到多个纳米通道时,其出色的性能不会显示出线性增加,在某些情况下,甚至显示出相反的趋势。纳米流体中这种按比例放大的不一致的理解对于功能器件的设计是必不可少的。在这里,我们提供了一种用于研究串联和并联连接的多个纳米通道中离子传输特性的方法。我们发现,由串联和平行纳米通道中的离子浓度极化(ICP)引起的界面电阻对ICR有重大影响,展示了具有串联数的非线性放大特征和具有平行数的减小趋势,这在电子设备中是无法预期的。我们进一步验证了通过增加串联和平行结构中的纳米通道之间的间隙距离以解耦纳米通道之间的ICP区域来调节串联和平行纳米通道中的离子传输是可行的。这项研究为纳米流体电路中的离子传输特性提供了基本的见识,这为分离,能量和传感器领域的高性能纳米流体设备的设计提供了希望。我们进一步验证了通过增加串联和平行结构中的纳米通道之间的间隙距离以解耦纳米通道之间的ICP区域来调节串联和平行纳米通道中的离子传输是可行的。这项研究为纳米流体电路中的离子传输特性提供了基本的见识,这为分离,能量和传感器领域的高性能纳米流体设备的设计提供了希望。我们进一步验证了通过增加串联和平行结构中的纳米通道之间的间隙距离以解耦纳米通道之间的ICP区域来调节串联和平行纳米通道中的离子传输是可行的。这项研究为纳米流体电路中的离子传输特性提供了基本的见识,这为分离,能量和传感器领域的高性能纳米流体设备的设计提供了希望。
更新日期:2020-01-07
down
wechat
bug