当前位置: X-MOL 学术Russ. J. Electrochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impedance of LiFe 0.4 Mn 0.6 PO 4 Electrodes with Combined Conducting Polymer Binder of PEDOT:PSS and Carboxymethyl Cellulose
Russian Journal of Electrochemistry ( IF 1.2 ) Pub Date : 2019-12-11 , DOI: 10.1134/s1023193519110028
R. V. Apraksin , S. N. Eliseeva , M. A. Kamenskii , E. G. Tolstopyatova , G. G. Lang , V. V. Kondrat’ev

Abstract

This work studies the electrochemical properties of cathodic materials for lithium–ion batteries based on mixed lithium–iron–manganese phosphate LiFe0.4Mn0.6PO4 (LFMP) obtained using a conducting binder containing poly-3,4-ethylenedioxythiophene : polystyrenesulfonate (PEDOT:PSS) and carboxymethyl cellulose (CMC). The results are compared with those for the material based on LiFe0.4Mn0.6PO4 manufactured with the conventional polyvinylidene fluoride (PVDF) binder. The electrode material with the PEDOT:PSS/CMC binder manifests enhanced functional characteristics as compared to electrodes with the conventional binder. It is found that replacement of the conventional binder by the combined conducting PEDOT:PSS/CMC binder in the LFMP-based cathodic material results in an increase in the specific capacity of the cathodic material. Particularly noticeable advantages of the material with respect to specific capacity are observed at high currents (up to 10 C), which can be explained by the increasing rate of the processes of material recharge due to a significant decrease in the charge transfer resistance and an increase in the apparent diffusion coefficient of the lithium ions.



中文翻译:

LiED 0.4 Mn 0.6 PO 4电极与PEDOT:PSS和羧甲基纤维素复合导电粘合剂的阻抗

抽象的

这项工作研究了锂离子电池正极材料的电化学性能,该材料基于磷酸铁锂锰磷酸锂铁0.40.6 PO 4(LFMP),其使用包含聚-3,4-乙撑二氧噻吩的导电粘合剂获得:聚苯乙烯磺酸盐(PEDOT: PSS)和羧甲基纤维素(CMC)。将结果与基于LiFe 0.4 Mn 0.6 PO 4的材料的结果进行比较用常规的聚偏二氟乙烯(PVDF)粘合剂制造。与具有常规粘合剂的电极相比,具有PEDOT:PSS / CMC粘合剂的电极材料表现出增强的功能特性。发现在基于LFMP的阴极材料中用组合的导电PEDOT:PSS / CMC粘合剂代替常规粘合剂导致阴极材料的比容量增加。在高电流(高达10 C)下,观察到了材料在比容量方面的特别明显的优势,这可以用由于电荷转移电阻的显着降低和增加而导致的材料充电过程的速率增加来解释锂离子的表观扩散系数。

更新日期:2019-12-11
down
wechat
bug