当前位置: X-MOL 学术Int. J. Miner. Metall. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The mechanism and products for co-thermal extraction of biomass and low-rank coal with NMP
International Journal of Minerals, Metallurgy and Materials ( IF 4.8 ) Pub Date : 2019-12-07 , DOI: 10.1007/s12613-019-1872-z
Jun Zhao , Hai-bin Zuo , Jing-song Wang , Qing-guo Xue

The high-value utilization of low-rank coal would allow for expanding energy sources, improving energy efficiencies, and alleviating environmental issues. In order to use low-rank coal effectively, the hypercoals (HPCs) were co-extracted from two types of low-rank coal and biomass via N-methyl-2-purrolidinone (NMP) under mild conditions. The structures of the HPCs and residues were characterized by proximate and ultimate analysis, Raman spectra, and Fourier transform infrared (FT-IR) spectra. The carbon structure changes within the raw coals and HPCs were discussed. The individual thermal dissolution of Xibu (XB) coal, Guandi (GD) coal, and the biomass demonstrated that the biomass provided the lowest thermal dissolution yield Y1 and the highest thermal soluble yield Y2 at 280°C, and the ash content of three HPCs decreased as the extraction temperature rose. Co-thermal extractions in NMP at various coal/biomass mass ratios were performed, demonstrating a positive synergic effect for Y2 in the whole coal/biomass mass ratios. The maximum value of Y2 was 52.25wt% for XB coal obtained with a XB coal/biomass of 50wt% biomass. The maximum value of Y2 was 50.77wt% for GD coal obtained with a GD coal/biomass of 1:4. The difference for the optimal coal/biomass mass ratios between XB and GD coals could be attributed to the different co-extraction mechanisms for this two type coals.

更新日期:2019-12-07
down
wechat
bug