当前位置: X-MOL 学术Microfluid. Nanofluid. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimised multi-stream microfluidic designs for controlled extensional deformation
Microfluidics and Nanofluidics ( IF 2.8 ) Pub Date : 2019-11-13 , DOI: 10.1007/s10404-019-2295-x
Konstantinos Zografos , Simon J. Haward , Mónica S. N. Oliveira

In this study, we optimise two types of multi-stream configurations (a T-junction and a flow-focusing design) to generate a homogeneous extensional flow within a well-defined region. The former is used to generate a stagnation point flow allowing molecules to accumulate significant strain, which has been found very useful for performing elongational studies. The latter relies on the presence of opposing lateral streams to shape a main stream and generate a strong region of extension in which the shearing effects of fluid–wall interactions are reduced near the region of interest. The optimisations are performed in two (2D) and three dimensions (3D) under creeping flow conditions for Newtonian fluid flow. It is demonstrated that in contrast with the classical-shaped geometries, the optimised designs are able to generate a well-defined region of homogeneous extension. The operational limits of the obtained 3D optimised configurations are investigated in terms of Weissenberg number for both constant viscosity and shear-thinning viscoelastic fluids. Additionally, for the 3D optimised flow-focusing device, the operational limits are investigated in terms of increasing Reynolds number and for a range of velocity ratios between the opposing lateral streams and the main stream. For all obtained 3D optimised multi-stream configurations, we perform the experimental validation considering a Newtonian fluid flow. Our results show good agreement with the numerical study, reproducing the desired kinematics for which the designs are optimised.



中文翻译:

优化的多流微流控设计,可控制拉伸变形

在这项研究中,我们优化了两种类型的多流配置(T型结和流向设计),以在定义明确的区域内生成均匀的扩展流。前者用于产生停滞点流,使分子积聚显着的应变,已发现后者对于进行伸长率研究非常有用。后者依靠相对的横向流的存在来形成主流并生成一个强大的延伸区域,在该区域中,流体-壁相互作用的剪切作用在感兴趣区域附近被减小。在牛顿流体流动的蠕变流动条件下,以二维(2D)和三维(3D)进行优化。结果表明,与经典形状相比,经过优化的设计能够生成定义明确的均匀扩展区域。针对恒定粘度和剪切稀化粘弹性流体,均根据Weissenberg数研究了获得的3D优化配置的操作极限。此外,对于3D优化的流聚焦设备,将根据增加的雷诺数以及相对的横向流和主流之间的速度比范围来研究运行极限。对于所有获得的3D优化的多流配置,我们考虑牛顿流体流进行实验验证。我们的结果与数值研究显示出很好的一致性,再现了针对其进行了优化设计的所需运动学。针对恒定粘度和剪切稀化粘弹性流体,均根据Weissenberg数研究了获得的3D优化配置的操作极限。此外,对于3D优化的流聚焦设备,将根据增加的雷诺数以及相对的横向流和主流之间的速度比范围来研究运行极限。对于所有获得的3D优化的多流配置,我们考虑牛顿流体流进行实验验证。我们的结果与数值研究显示出很好的一致性,再现了针对其进行了优化设计的所需运动学。针对恒定粘度和剪切稀化粘弹性流体,均根据Weissenberg数研究了获得的3D优化配置的操作极限。此外,对于3D优化的流聚焦设备,将根据增加的雷诺数以及相对的横向流和主流之间的速度比范围来研究运行极限。对于所有获得的3D优化的多流配置,我们考虑牛顿流体流进行实验验证。我们的结果与数值研究显示出很好的一致性,再现了针对其进行了优化设计的所需运动学。根据增加的雷诺数和相对的横向流与主流之间的速度比范围来研究运行极限。对于所有获得的3D优化的多流配置,我们考虑牛顿流体流进行实验验证。我们的结果与数值研究显示出很好的一致性,再现了针对其进行了优化设计的所需运动学。根据增加的雷诺数和相对的横向流与主流之间的速度比范围来研究运行极限。对于所有获得的3D优化的多流配置,我们考虑牛顿流体流进行实验验证。我们的结果与数值研究显示出很好的一致性,再现了针对其进行了优化设计的所需运动学。

更新日期:2019-11-13
down
wechat
bug