当前位置: X-MOL 学术J. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Triazine-based 2D covalent organic frameworks improve the electrochemical performance of enzymatic biosensors
Journal of Materials Science ( IF 4.5 ) Pub Date : 2019-12-01 , DOI: 10.1007/s10853-019-04254-5
Onur Yildirim , Burak Derkus

Covalent organic frameworks (COFs) are crystalline nano/microporous materials assembled from organic molecules through covalent bonds. Having various advantages such as large surface area, fully conjugated structure, and being in atom-thick dimensions makes COFs a promising candidate for numerous applications such as energy storage, electrocatalysis, and electrochemical devices. Yet, their potential for facilitating biosensor design and bioelectrochemical processes has not extensively been investigated. Therefore, in this study, we harnessed the simplicity, enhanced conductive property, and organic nature of COFs in electrochemical enzymatic biosensor design that aimed to detect superoxide radicals as a model system. Two different triazine-based COFs, CTF-1 and TRITER-1, were successfully synthesized and characterized using Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Electrochemical studies demonstrated that CTF-1 improves the electrochemical performance of the enzymatic biosensors and is suitable for electrode design. Using the developed CTF-1-based biosensor that uses superoxide dismutase (SOD) as recognizing element, we measured the levels of superoxide anions, which are known to include in carcinogenesis process, with 0.5 nM detection limit.

中文翻译:

基于三嗪的二维共价有机框架提高酶生物传感器的电化学性能

共价有机框架 (COF) 是由有机分子通过共价键组装而成的结晶纳米/微孔材料。具有大表面积、完全共轭结构和原子厚度等各种优点使 COF 成为众多应用(如储能、电催化和电化学装置)的有希望的候选者。然而,它们促进生物传感器设计和生物电化学过程的潜力尚未得到广泛研究。因此,在这项研究中,我们在电化学酶促生物传感器设计中利用了 COF 的简单性、增强的导电性能和有机性质,旨在检测超氧自由基作为模型系统。两种不同的基于三嗪的 COF,CTF-1 和 TRITER-1,使用傅里叶变换红外光谱 (FT-IR)、核磁共振 (NMR)、X 射线衍射 (XRD) 和透射电子显微镜 (TEM) 成功合成和表征。电化学研究表明,CTF-1 提高了酶生物传感器的电化学性能,适用于电极设计。使用开发的基于 CTF-1 的生物传感器,该传感器使用超氧化物歧化酶 (SOD) 作为识别元素,我们测量了超氧阴离子的水平,已知这些阴离子包含在致癌过程中,检测限为 0.5 nM。电化学研究表明,CTF-1 提高了酶生物传感器的电化学性能,适用于电极设计。使用开发的基于 CTF-1 的生物传感器,该传感器使用超氧化物歧化酶 (SOD) 作为识别元素,我们测量了超氧阴离子的水平,已知这些阴离子包含在致癌过程中,检测限为 0.5 nM。电化学研究表明,CTF-1 提高了酶生物传感器的电化学性能,适用于电极设计。使用开发的基于 CTF-1 的生物传感器,该传感器使用超氧化物歧化酶 (SOD) 作为识别元素,我们测量了超氧阴离子的水平,已知这些阴离子包含在致癌过程中,检测限为 0.5 nM。
更新日期:2019-12-01
down
wechat
bug