当前位置: X-MOL 学术J. Biol. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Distinct alterations of gut morphology and microbiota characterize accelerated diabetes onset in nonobese diabetic mice.
Journal of Biological Chemistry ( IF 5.5 ) Pub Date : 2019-12-10 , DOI: 10.1074/jbc.ra119.010816
Marie-Christine Simon 1, 2, 3 , Anna Lena Reinbeck 1, 2 , Corinna Wessel 1, 2 , Julia Heindirk 1, 2 , Tomas Jelenik 1, 2 , Kirti Kaul 1, 2 , Juan Arreguin-Cano 1, 2 , Alexander Strom 1, 2 , Michael Blaut 4 , Fredrik Bäckhed 3, 5 , Volker Burkart 1, 2 , Michael Roden 2, 6, 7
Affiliation  

The rising prevalence of type 1 diabetes (T1D) over the past decades has been linked to lifestyle changes, but the underlying mechanisms are largely unknown. Recent findings point to gut-associated mechanisms in the control of T1D pathogenesis. In nonobese diabetic (NOD) mice, a model of T1D, diabetes development accelerates after deletion of the Toll-like receptor 4 (TLR4). We hypothesized that altered intestinal functions contribute to metabolic alterations, which favor accelerated diabetes development in TLR4-deficient (TLR4-/-) NOD mice. In 70-90-day-old normoglycemic (prediabetic) female NOD TLR4+/+ and NOD TLR4-/- mice, gut morphology and microbiome composition were analyzed. Parameters of lipid metabolism, glucose homeostasis, and mitochondrial respiratory activity were measured in vivo and ex vivo Compared with NOD TLR4+/+ mice, NOD TLR4-/- animals showed lower muscle mass of the small intestine, higher abundance of Bacteroidetes, and lower Firmicutes in the large intestine, along with lower levels of circulating short-chain fatty acids (SCFA). These changes are associated with higher body weight, hyperlipidemia, and severe insulin and glucose intolerance, all occurring before the onset of diabetes. These mice also exhibited insulin resistance-related abnormalities of energy metabolism, such as lower total respiratory exchange rates and higher hepatic oxidative capacity. Distinct alterations of gut morphology and microbiota composition associated with reduction of circulating SCFA may contribute to metabolic disorders promoting the progression of insulin-deficient diabetes/T1D development.

中文翻译:

在非肥胖糖尿病小鼠中,肠道形态和微生物群的明显改变是糖尿病发作加速的特征。

在过去的几十年中,1型糖尿病(T1D)患病率的上升与生活方式的变化有关,但其潜在机制在很大程度上尚不清楚。最近的发现指向肠道相关的机制,以控制T1D发病机理。在非肥胖糖尿病(NOD)小鼠(T1D模型)中,Toll样受体4(TLR4)缺失后,糖尿病的发展会加速。我们假设肠道功能的改变有助于代谢改变,这有利于在TLR4缺乏(TLR4-/-)NOD小鼠中加速糖尿病的发展。在70-90天大的正常血糖(糖尿病前期)雌性NOD TLR4 + / +和NOD TLR4-/-小鼠中,分析了肠道形态和微生物组组成。与NOD TLR4 + / +小鼠相比,体内和体外测量了脂质代谢,葡萄糖稳态和线粒体呼吸活性的参数。NOD TLR4-/-动物的小肠肌肉质量降低,拟杆菌的丰度更高,大肠的硬脂动物含量更低,同时循环短链脂肪酸(SCFA)的含量也较低。这些变化与更高的体重,高脂血症以及严重的胰岛素和葡萄糖耐受不良有关,所有这些都在糖尿病发作之前发生。这些小鼠还表现出与胰岛素抵抗相关的能量代谢异常,例如较低的总呼吸交换率和较高的肝氧化能力。肠道形态和微生物群组成的明显改变与循环中SCFA的减少有关,可能导致代谢紊乱,促进了胰岛素缺乏型糖尿病/ T1D的发展。大肠中的拟杆菌含量较高,硬毛虫含量较低,循环短链脂肪酸(SCFA)的含量较低。这些变化与更高的体重,高脂血症以及严重的胰岛素和葡萄糖耐受不良有关,所有这些都在糖尿病发作之前发生。这些小鼠还表现出与胰岛素抵抗相关的能量代谢异常,例如较低的总呼吸交换率和较高的肝氧化能力。肠道形态和微生物群组成的明显改变与循环中SCFA的减少有关,可能导致代谢紊乱,促进了胰岛素缺乏型糖尿病/ T1D的发展。大肠中的拟杆菌含量较高,硬毛虫含量较低,循环短链脂肪酸(SCFA)的含量较低。这些变化与更高的体重,高脂血症以及严重的胰岛素和葡萄糖耐受不良有关,所有这些都在糖尿病发作之前发生。这些小鼠还表现出与胰岛素抵抗相关的能量代谢异常,例如较低的总呼吸交换率和较高的肝氧化能力。肠道形态和微生物群组成的明显改变与循环中SCFA的减少有关,可能导致代谢紊乱,促进了胰岛素缺乏型糖尿病/ T1D的发展。这些变化与更高的体重,高脂血症以及严重的胰岛素和葡萄糖耐受不良有关,所有这些都在糖尿病发作之前发生。这些小鼠还表现出与胰岛素抵抗相关的能量代谢异常,例如较低的总呼吸交换率和较高的肝氧化能力。肠道形态和微生物群组成的明显改变与循环中SCFA的减少有关,可能导致代谢紊乱,促进了胰岛素缺乏型糖尿病/ T1D的发展。这些变化与更高的体重,高脂血症以及严重的胰岛素和葡萄糖耐受不良有关,所有这些都在糖尿病发作之前发生。这些小鼠还表现出与胰岛素抵抗相关的能量代谢异常,例如较低的总呼吸交换率和较高的肝氧化能力。肠道形态和微生物群组成的明显改变与循环中SCFA的减少有关,可能导致代谢紊乱,促进了胰岛素缺乏型糖尿病/ T1D的发展。
更新日期:2020-01-24
down
wechat
bug