当前位置: X-MOL 学术Nat. Astron. › 论文详情
Cascading parallel fractures on Enceladus
Nature Astronomy ( IF 10.500 ) Pub Date : 2019-12-09 , DOI: 10.1038/s41550-019-0958-x
Douglas J. Hemingway, Maxwell L. Rudolph, Michael Manga

Active eruptions from the south polar region of Saturn’s ~500-km-diameter moon Enceladus are concentrated along a series of lineaments known as the ‘tiger stripes’1,2, thought to be partially open fissures that connect to the liquid water ocean beneath the ice shell3,4. To date, no study simultaneously explains why the tiger stripes should be located only at the south pole, why there are multiple approximately parallel and regularly spaced fractures, what accounts for their spacing of about 35 km, and why similarly active fissures have not been observed on other icy bodies. Here we propose that secular cooling, which leads to a thickening of the ice shell and building of global tensile stresses5,6, causes the first fracture to form at one of the poles, where the ice shell is thinnest owing to tidal heating7. The tensile stresses are thereby relieved, preventing a similar failure at the opposite pole. The steadily erupting water ice loads the flanks of the open fissure, causing bending in the surrounding elastic plate and further tensile failure in bands parallel to the first fracture—a process that may be unique to Enceladus, where the gravity is too weak for compressive stresses to prevent fracture propagation through the thin ice shell. The sequence of fissures then cascades outwards until the loading becomes too weak or the background shell thickness becomes too great to permit through-going fractures.
更新日期:2019-12-11

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug