当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strength retention, corrosion control and biocompatibility of Mg-Zn-Si/HA nanocomposites.
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.9 ) Pub Date : 2019-12-09 , DOI: 10.1016/j.jmbbm.2019.103584
Gururaj Parande 1 , Vyasaraj Manakari 1 , Somasundaram Prasadh 2 , Deep Chauhan 3 , Sarthak Rahate 4 , Raymond Wong 2 , Manoj Gupta 1
Affiliation  

Owing to the poor load-bearing ability and apparent cytotoxicity of polymeric and ceramic materials, magnesium-based materials can be an ideal substitute for bone repair applications. Magnesium is bioresorbable, unlike other metallic materials like titanium and stainless steel, has excellent biocompatibility, compressive strengths and elastic modulus similar to the natural bone, which circumvents the need for secondary surgery post-implantation in vivo. Against this background, in this study, magnesium-based nanocomposites were developed by using hydroxyapatite bioceramic as a nano reinforcement. Magnesium-based alloys were synthesized using selective alloying elements and hydroxyapatite incorporated nanocomposites were processed using the disintegrated melt deposition technique. The microstructure characterization revealed that the addition of hydroxyapatite resulted in superior grain refinement of the magnesium alloy matrix. The addition of hydroxyapatite improved the yield strength of the alloy matrix and displayed superior strength and ductility retention post corrosion for 21 days, under compression loading. The presence of hydroxyapatite improved the hydrophilicity of the alloy matrix thereby aiding the biocompatibility properties with improved corrosion resistance, level 0 cytotoxicity, and high cell attachment. Hence, the present study strongly suggests that magnesium alloy-based hydroxyapatite nanocomposites can be a suitable candidate for bone repair applications.



中文翻译:

Mg-Zn-Si / HA纳米复合材料的强度保持力,腐蚀控制和生物相容性。

由于聚合物和陶瓷材料的差的承载能力和明显的细胞毒性,镁基材料可以成为骨修复应用的理想替代品。镁具有生物可吸收性,与其他金属材料(如钛和不锈钢)不同,它具有与天然骨相似的出色生物相容性,抗压强度和弹性模量,从而无需在体内进行植入后的二次手术。在此背景下,本研究通过使用羟基磷灰石生物陶瓷作为纳米增强材料开发了镁基纳米复合材料。使用选择性合金元素合成了镁基合金,并使用分解熔融沉积技术处理了掺入羟基磷灰石的纳米复合材料。微观结构表征表明,羟基磷灰石的加入导致镁合金基体的优异晶粒细化。羟基磷灰石的添加改善了合金基体的屈服强度,并在压缩载荷下腐蚀21天后显示出优异的强度和延展性保持率。羟基磷灰石的存在改善了合金基体的亲水性,从而以改善的耐腐蚀性,0级细胞毒性和高细胞附着性帮助了生物相容性。因此,本研究强烈建议基于镁合金的羟基磷灰石纳米复合材料可以作为骨修复应用的合适候选物。羟基磷灰石的添加改善了合金基体的屈服强度,并在压缩载荷下腐蚀21天后显示出优异的强度和延展性保持率。羟基磷灰石的存在改善了合金基体的亲水性,从而以改善的耐腐蚀性,0级细胞毒性和高细胞附着性帮助了生物相容性。因此,本研究强烈建议基于镁合金的羟基磷灰石纳米复合材料可以作为骨修复应用的合适候选物。羟基磷灰石的添加改善了合金基体的屈服强度,并在压缩载荷下腐蚀21天后显示出优异的强度和延展性保持率。羟基磷灰石的存在改善了合金基体的亲水性,从而以改善的耐腐蚀性,0级细胞毒性和高细胞附着性帮助了生物相容性。因此,本研究强烈建议基于镁合金的羟基磷灰石纳米复合材料可以作为骨修复应用的合适候选物。和高细胞附着力。因此,本研究强烈建议基于镁合金的羟基磷灰石纳米复合材料可以作为骨修复应用的合适候选物。和高细胞附着力。因此,本研究强烈建议基于镁合金的羟基磷灰石纳米复合材料可以作为骨修复应用的合适候选物。

更新日期:2019-12-09
down
wechat
bug