当前位置: X-MOL 学术Desalination › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Freshwater and cooling production via integration of an ethane ejector expander transcritical refrigeration cycle and a humidification-dehumidification unit
Desalination ( IF 9.9 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.desal.2019.114259
Towhid Gholizadeh , Mohammad Vajdi , Hadi Rostamzadeh

Abstract Despite the fact that humidification-dehumidification (HDH) desalination systems can be driven by various renewable or waste heat energies, many of the available renewable technologies are expensive in some parts of the globe. Hence, proposing and developing high-efficient mechanical-based HDH units can be an encouraging alternative which is more highlighted in recent investigations. In pursuance of this objective, three innovative mechanical-driven HDH units are simulated and the results are compared with each other. The simulated hybrid desalination system consists of a HDH unit and an ethane ejector expander transcritical refrigeration cycle (ethane-EETRC). The simulated hybrid systems can produce freshwater and cooling load, simultaneously. The main difference between each system is the proposal of using two-stage compression and humidification-dehumidification processes at different scenarios. The results display that a maximum freshwater of 17.3 m3/day can be achieved when a two-stage HDH unit is used with a single-stage compression ethane-EETRC, resulting in CGOR (cogeneration-based gain output ratio), exergy efficiency, and cooling load of 6.56, 17.13% and146.9 kW, respectively. However, to achieve as high cooling load as 161.8 kW - with CGOR, exergy efficiency, and freshwater of 5.19, 18.1% and 11.97 m3/day, respectively - a configuration with two HDH units coupled with a two-stage ethane-EETRC is highly commendable. Moreover, the cost evaluation results indicated that unit overall cost of the product (UOCP) of the hybrid system with two HDH units integrated with a two-stage ethane-EETRC and the hybrid set-up with a two-stage HDH unit integrated with a single-stage ethane-EETRC is calculated 8.2 $/GJ and 8.93 $/GJ, respectively. At last, an intensive parametric evaluation of some influential parameters is presented.

中文翻译:

通过集成乙烷喷射膨胀机跨临界制冷循环和加湿-除湿单元来生产淡水和冷却

摘要 尽管加湿-除湿 (HDH) 海水淡化系统可以由各种可再生能源或废热能驱动,但在全球某些地区,许多可用的可再生技术都很昂贵。因此,提出和开发基于机械的高效 HDH 装置可能是一种令人鼓舞的替代方案,这在最近的调查中更为突出。为了实现这一目标,对三个创新的机械驱动 HDH 单元进行了仿真,并将结果相互比较。模拟的混合海水淡化系统由一个 HDH 装置和一个乙烷喷射膨胀器跨临界制冷循环 (乙烷-EETRC) 组成。模拟的混合系统可以同时产生淡水和冷负荷。每个系统之间的主要区别是在不同场景下使用两级压缩和加湿-除湿过程的建议。结果表明,当两级 HDH 装置与单级压缩乙烷 EETRC 一起使用时,可以实现最大 17.3 立方米/天的淡水,从而产生 CGOR(基于热电联产的增益输出比)、火用效率和冷负荷分别为 6.56、17.13% 和 146.9 kW。然而,要实现 161.8 kW 的高冷却负荷——CGOR、火用效率和淡水分别为 5.19、18.1% 和 11.97 m3/天——配备两台 HDH 装置和两级乙烷-EETRC 的配置非常重要值得称道。而且,成本评估结果表明,两个 HDH 装置与一个两级乙烷 EETRC 集成的混合系统的产品 (UOCP) 的单位总成本和一个两级 HDH 单元与一个单-阶段乙烷-EETRC 分别计算为 8.2 $/GJ 和 8.93 $/GJ。最后,对一些有影响的参数进行了深入的参数评估。
更新日期:2020-03-01
down
wechat
bug