当前位置: X-MOL 学术J. Tissue Eng. Regen. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tubular scaffold with microchannels and an H-shaped lumen loaded with bone marrow stromal cells promotes neuroregeneration and inhibits apoptosis after spinal cord injury.
Journal of Tissue Engineering and Regenerative Medicine ( IF 3.3 ) Pub Date : 2019-12-10 , DOI: 10.1002/term.2996
Xue Chen 1, 2 , Jian Wu 1 , Rongcheng Sun 1 , Yahong Zhao 3 , Yi Li 1 , Jingying Pan 1 , Ying Chen 1 , Xiaodong Wang 1, 4
Affiliation  

As a result of its complex histological structure, regeneration patterns of grey and white matter are quite different in the spinal cord. Therefore, tissue engineering scaffolds for repairing spinal cord injury must be able to adapt to varying neural regeneration patterns. The aim of the present study was to improve a previously reported spinal cord-mimicking partition-type scaffold by adding microchannels on a single tubular wall along its longitudinal axis, thus integrating the two architectures of a single H-shaped central tube and many microchannels. Next, the integrated scaffold was loaded with bone marrow stromal cells (BMSCs) and transplanted to bridge the 5-mm defect of a complete transverse lesion in the thoracic spinal cord of rats. Subsequently, effects on nerve regeneration, locomotion function recovery, and early neuroprotection were observed. After 1 year of repair, the integrated scaffold could guide the regeneration of axons appearing in the debris of degraded microchannels, especially serotonin receptor 1A receptor-positive axonal tracts, which were relatively orderly arranged. Moreover, a network of nerve fibres was present, and a few BMSCs expressed neuronal markers in tubular lumens. Functionally, electrophysiological and locomotor functions of rats were partially recovered. In addition, we found that BMSCs could protect neurons and oligodendrocytes from apoptosis during the early stage of implantation. Taken together, our results demonstrate the potential of this novel integrated scaffold loaded with BMSCs to promote spinal cord regeneration through mechanical guidance and neuroprotective mechanisms.

中文翻译:

具有微通道的管状支架和装有骨髓基质细胞的H形管腔可促进神经再生并抑制脊髓损伤后的细胞凋亡。

由于其复杂的组织学结构,脊髓中灰质和白质的再生方式有很大不同。因此,用于修复脊髓损伤的组织工程支架必须能够适应变化的神经再生方式。本研究的目的是通过在沿其纵轴的单个管状壁上添加微通道,从而整合单个H形中心管和许多微通道的两种结构,来改进先前报道的模拟脊髓的分隔型支架。接下来,在整合的支架中加载骨髓基质细胞(BMSC),然后移植以桥接大鼠胸脊髓中完整横向病变的5毫米缺损。随后,对神经再生,运动功能恢复,并观察到早期神经保护作用。修复1年后,整合的支架可以指导降解的微通道碎片中出现的轴突再生,尤其是血清素受体1A受体阳性的轴突束,这些轴突排列相对有序。此外,存在神经纤维网络,并且一些BMSC在肾小管腔中表达神经元标记。在功能上,大鼠的电生理和运动功能已部分恢复。此外,我们发现BMSCs可以在植入初期保护神经元和少突胶质细胞免于凋亡。综上所述,我们的结果证明了这种新型的整合BMSCs的整合支架具有通过机械引导和神经保护机制促进脊髓再生的潜力。整合的支架可以指导降解的微通道碎片中出现的轴突再生,尤其是血清素受体1A受体阳性的轴突束,这些轴突排列相对有序。此外,存在神经纤维网络,并且一些BMSC在肾小管腔中表达神经元标记。在功能上,大鼠的电生理和运动功能已部分恢复。此外,我们发现BMSCs可以在植入初期保护神经元和少突胶质细胞免于凋亡。综上所述,我们的结果证明了这种新型的整合BMSCs的整合支架具有通过机械引导和神经保护机制促进脊髓再生的潜力。整合的支架可以指导降解的微通道碎片中出现的轴突再生,尤其是血清素受体1A受体阳性的轴突束,这些轴突排列相对有序。此外,存在神经纤维网络,并且一些BMSC在肾小管腔中表达神经元标记。在功能上,大鼠的电生理和运动功能已部分恢复。此外,我们发现BMSCs可以在植入初期保护神经元和少突胶质细胞免于凋亡。综上所述,我们的结果证明了这种新型的整合BMSCs的整合支架具有通过机械引导和神经保护机制促进脊髓再生的潜力。
更新日期:2020-01-31
down
wechat
bug