当前位置: X-MOL 学术Comp. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strength analysis of a defective diamondene nanoribbon under uni-axial tension
Computational Materials Science ( IF 3.3 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.commatsci.2019.109459
Lei Wang , Donghao Li , Jiao Shi , Kun Cai

Abstract Due to its unique sp2/sp3 hybrid electron configuration, diamondene with superior physical properties diversifies the allotrope family of carbon and attracts much attention in recent year. Considering the inevitable occurrence of imperfections during its fabricating process under super high compression, influences of point vacancy or Stone-Wales (SW) defects on the tensile strength of a defective diamondene nanoribbon were examined using molecular dynamics method in the present work. Results show that a defective ribbon under tension behaves softening-to-hardening transition owing to abrupt changes of both bond length and bond angle at a critical tensile strain. Point vacancy and SW defects lead to different failure modes of the diamondene ribbon, which can be characterized by shear band originating from defects along ±45° of stretching direction. Especially, for a ribbon with SW-1 defect (by rotating 90° of a bond along stretching direction), it behaves a complicated multi-stage damage process. However, point vacancy produces two separate semi shear bands originating from the defect and later merging to be a whole shear band. After hydrogenation on both surfaces of a pristine ribbon, the softening-to-hardening transition still exists under uni-axial tension along armchair direction. However, the final fracture mode is quite different with that of the pristine counterpart. These characteristics provide guidelines on potential application of nano-devices based on diamondene.

中文翻译:

单轴拉伸下缺陷金刚石纳米带的强度分析

摘要 由于其独特的sp2/sp3杂化电子构型,金刚石烯具有优越的物理性质,使碳的同素异形体家族多样化,近年来备受关注。考虑到在超高压缩下的制造过程中不可避免地会出现缺陷,在目前的工作中使用分子动力学方法研究了点空位或斯通威尔士 (SW) 缺陷对有缺陷的金刚石纳米带拉伸强度的影响。结果表明,由于键长和键角在临界拉伸应变下的突然变化,在张力下的缺陷带表现为软化到硬化的转变。点空位和 SW 缺陷导致金刚石带的不同失效模式,其特征在于沿拉伸方向±45°的缺陷产生的剪切带。特别是,对于具有 SW-1 缺陷的带(通过沿拉伸方向旋转 90° 的键合)​​,它表现出复杂的多阶段损伤过程。然而,点空位产生两个独立的半剪切带,起源于缺陷,后来合并为一个完整的剪切带。在原始色带的两面氢化后,在沿扶手椅方向的单轴张力下,仍然存在软化到硬化的转变。然而,最终的断裂模式与原始对应物的断裂模式完全不同。这些特性为基于金刚石烯的纳米器件的潜在应用提供了指导。它表现为一个复杂的多阶段破坏过程。然而,点空位产生两个独立的半剪切带,起源于缺陷,后来合并为一个完整的剪切带。在原始色带的两面氢化后,在沿扶手椅方向的单轴张力下,仍然存在软化到硬化的转变。然而,最终的断裂模式与原始对应物的断裂模式完全不同。这些特性为基于金刚石烯的纳米器件的潜在应用提供了指导。它表现为一个复杂的多阶段破坏过程。然而,点空位产生两个独立的半剪切带,起源于缺陷,后来合并为一个完整的剪切带。在原始色带的两面氢化后,在沿扶手椅方向的单轴张力下,仍然存在软化到硬化的转变。然而,最终的断裂模式与原始对应物的断裂模式完全不同。这些特性为基于金刚石烯的纳米器件的潜在应用提供了指导。在沿扶手椅方向的单轴张力下,软化到硬化的转变仍然存在。然而,最终的断裂模式与原始对应物的断裂模式完全不同。这些特性为基于金刚石烯的纳米器件的潜在应用提供了指导。在沿扶手椅方向的单轴张力下,软化到硬化的转变仍然存在。然而,最终的断裂模式与原始对应物的断裂模式完全不同。这些特性为基于金刚石烯的纳米器件的潜在应用提供了指导。
更新日期:2020-02-01
down
wechat
bug