当前位置: X-MOL 学术Gas Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental study on the damage of organic-rich shale during water-shale interaction
Gas Science and Engineering ( IF 5.285 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.jngse.2019.103103
Yuepeng Wang , Xiangjun Liu , Lixi Liang , Jian Xiong

Abstract Water-shale interaction remains an unsolved problem because of the complexity involved in the physical processes and the heterogeneity in the chemical composition and pore structure of rocks. By considering the basic physical properties of Longmaxi shale and performing a series of physical experiments representing the water-shale interaction, the relationship between the mineral composition and water-shale interaction, which is the process responsible for causing structural damage when water and shale interact, is analysed. The ion exchange of clay minerals occurs when shale makes contact with water and different kinds of cations experience different degrees of overflow in water-shale interaction. The charge of clay mineral changes during water-shale interaction, resulting in a change of the gravitational and repulsive forces between the particles. This leads to the passivation of the contour edges of clay minerals and changes in the mechanical properties. In a relatively short time, illite can produce a large hydration stress with a small expansion value, but the hydration speed of Na-montmorillonite (Na-MMT) is relatively slow. Uneven stress caused by the hydration of different clay minerals being soaked in different aqueous solutions can cause local stress concentration, further promote the expansion and increase of original micro-cracks in shale, and then appear as disordered macro-cracks. The macroscopic cracks also provide a channel for the continuous entry of working fluid. More water molecules enter the shale faster and make contact with clay particles, weakening the interaction and cementation between particles. Macroscopically, they are manifested as a decrease in the rock cohesion, internal friction angle, and compressive strength as well as a failure of the structural integrity. Different inorganic salt solutions have different inhibitory effects on reducing the hydration degrees of illite and Na-MMT. Therefore, the water-shale interaction of organic-rich shale is a process in which the microscopic damage of water to rock gradually evolves into macroscopic damage, and results in the local continuity loss of rock on the basis of surface hydration, ion hydration, and osmotic hydration of clay minerals. The higher the clay mineral content, the more likely that hydration will occur, resulting in more serious shale structure damage and a shorter time for damage to occur.

中文翻译:

水-页岩相互作用对富有机质页岩破坏的实验研究

摘要 由于物理过程的复杂性以及岩石化学成分和孔隙结构的非均质性,水-页岩相互作用仍然是一个悬而未决的问题。通过考虑龙马溪页岩的基本物理性质,进行一系列代表水-页岩相互作用、矿物成分与水-页岩相互作用的物理实验,水-页岩相互作用是造成结构破坏的过程,被分析。页岩与水接触时发生粘土矿物的离子交换,不同种类的阳离子在水-页岩相互作用中经历不同程度的溢流。粘土矿物在水-页岩相互作用过程中的电荷变化,导致粒子之间的引力和排斥力发生变化。这导致粘土矿物的轮廓边缘钝化和机械性能的变化。伊利石在较短时间内可产生较大的水化应力,膨胀值较小,但钠蒙脱石(Na-MMT)的水化速度较慢。不同黏土矿物在不同水溶液中水化作用产生的不均匀应力会引起局部应力集中,进一步促进页岩中原有微裂缝的扩展和增加,进而表现为无序的宏观裂缝。宏观裂纹还为工作流体的连续进入提供了通道。更多的水分子更快地进入页岩并与粘土颗粒接触,减弱颗粒之间的相互作用和胶结作用。宏观上表现为岩石内聚力、内摩擦角、抗压强度降低,结构完整性破坏。不同无机盐溶液对降低伊利石和Na-MMT水化度的抑制作用不同。因此,富有机质页岩的水-页岩相互作用是水对岩石的微观破坏逐渐演化为宏观破坏的过程,导致岩石在地表水化、离子水化和水化作用基础上局部连续性丧失的过程。粘土矿物的渗透水化作用。粘土矿物含量越高,越容易发生水化作用,导致页岩结构破坏越严重,破坏发生时间越短。宏观上表现为岩石内聚力、内摩擦角、抗压强度降低,结构完整性破坏。不同无机盐溶液对降低伊利石和Na-MMT水化度的抑制作用不同。因此,富有机质页岩的水-页岩相互作用是水对岩石的微观破坏逐渐演化为宏观破坏的过程,导致岩石在地表水化、离子水化和水化作用基础上局部连续性丧失的过程。粘土矿物的渗透水化作用。粘土矿物含量越高,越容易发生水化作用,导致页岩结构破坏越严重,破坏发生时间越短。宏观上表现为岩石内聚力、内摩擦角、抗压强度降低,结构完整性破坏。不同无机盐溶液对降低伊利石和Na-MMT水化度的抑制作用不同。因此,富有机质页岩的水-页岩相互作用是水对岩石的微观破坏逐渐演化为宏观破坏的过程,导致岩石在地表水化、离子水化和水化作用基础上局部连续性丧失的过程。粘土矿物的渗透水化作用。粘土矿物含量越高,越容易发生水化作用,导致页岩结构破坏越严重,破坏发生时间越短。和抗压强度以及结构完整性的失败。不同无机盐溶液对降低伊利石和Na-MMT水化度的抑制作用不同。因此,富有机质页岩的水-页岩相互作用是水对岩石的微观破坏逐渐演化为宏观破坏的过程,导致岩石在地表水化、离子水化和水化作用基础上局部连续性丧失的过程。粘土矿物的渗透水化作用。粘土矿物含量越高,越容易发生水化作用,导致页岩结构破坏越严重,破坏发生时间越短。和抗压强度以及结构完整性的失败。不同无机盐溶液对降低伊利石和Na-MMT水化度的抑制作用不同。因此,富有机质页岩的水-页岩相互作用是水对岩石的微观破坏逐渐演化为宏观破坏的过程,导致岩石在地表水化、离子水化和水化作用基础上局部连续性丧失的过程。粘土矿物的渗透水化作用。粘土矿物含量越高,越容易发生水化作用,导致页岩结构破坏越严重,破坏发生时间越短。不同无机盐溶液对降低伊利石和Na-MMT水化度的抑制作用不同。因此,富有机质页岩的水-页岩相互作用是水对岩石的微观破坏逐渐演化为宏观破坏的过程,导致岩石在地表水化、离子水化和水化作用基础上局部连续性丧失的过程。粘土矿物的渗透水化作用。粘土矿物含量越高,越容易发生水化作用,导致页岩结构破坏越严重,破坏发生时间越短。不同无机盐溶液对降低伊利石和Na-MMT水化度的抑制作用不同。因此,富有机质页岩水-页岩相互作用是水对岩石的微观破坏逐渐演化为宏观破坏的过程,导致岩石在地表水化、离子水化和水化作用基础上局部连续性丧失的过程。粘土矿物的渗透水化作用。粘土矿物含量越高,越容易发生水化作用,导致页岩结构破坏越严重,破坏发生时间越短。在黏土矿物的表面水化、离子水化和渗透水化作用的基础上,导致岩石局部连续性丧失。粘土矿物含量越高,越容易发生水化作用,导致页岩结构破坏越严重,破坏发生时间越短。在黏土矿物的表面水化、离子水化和渗透水化作用的基础上,导致岩石局部连续性丧失。粘土矿物含量越高,越容易发生水化作用,导致页岩结构破坏越严重,破坏发生时间越短。
更新日期:2020-02-01
down
wechat
bug