当前位置: X-MOL 学术Metall. Mater. Trans. A. › 论文详情
Migration Pinning and Roughening Transition of a Ni Grain Boundary
Metallurgical and Materials Transactions A ( IF 1.985 ) Pub Date : 2019-12-06 , DOI: 10.1007/s11661-019-05579-1
Sung Bo Lee, Jinwook Jung, Seung Jo Yoo, Heung Nam Han

To date, much research has been conducted into the effect of migration pinning on the grain size in polycrystalline materials. However, effects of migration pinning on the grain-boundary structure and its transition have not been illuminated. Here, using transmission electron microscopy (TEM) we have explored the pinning effects for the grain boundary in a Ni bicrystal. During TEM specimen preparation, a hole was intentionally drilled in the middle of the grain boundary as a pinning point against grain-boundary migration. The specimen was heated to 600 °C. The grain boundary is driven to migrate by both the surface energy anisotropy and the total strain energy reduction. Grain-boundary facets with a plane orientation of {0 3 2}//{1 1 1} appear near the hole. The facets undergo a structural transition from atomically flat to rough with increasing distance from the hole. A pinning force exerted by the hole suppresses the migration of the grain boundary near the hole, indicating that the grain-boundary region away from the hole is subjected to a higher driving force. It certainly appears that the phenomenon originates from a change in driving force with the distance from the hole, being a signature of kinetic roughening.
更新日期:2019-12-07

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug