当前位置: X-MOL 学术Nanoscale Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cutting-based single atomic layer removal mechanism of monocrystalline copper: edge radius effect.
Nanoscale Research Letters ( IF 5.418 ) Pub Date : 2019-12-06 , DOI: 10.1186/s11671-019-3195-4
Wenkun Xie 1 , Fengzhou Fang 1, 2
Affiliation  

The ultimate objective of mechanical cutting is to down minimum chip thickness to single atomic layer. In this study, the cutting-based single atomic layer removal mechanism on monocrystalline copper is investigated by a series of molecular dynamics analysis. The research findings report that when cutting depth decreases to atomic scale, minimum chip thickness could be down to single atomic layer by mechanical cutting using rounded edge tool. The material removal behaviour during cutting-based single atomic layer removal exhibits four characteristics, including chip formation by shearing-stress driven dislocation motion, elastic deformation on the processed surface, atomic sizing effect, and cutting-edge radius effect. Based on this understanding, a new cutting model is proposed to study the material removal behaviour in cutting-based single atomic layer removal process, significantly different from those for nanocutting and conventional cutting. The outcomes provide theoretical support for the research and development of the atomic and close-to-atomic scale manufacturing technology.

中文翻译:

单晶铜的基于切削的单原子层去除机理:边缘半径效应。

机械切削的最终目标是将最小切屑厚度减小到单个原子层。本研究通过一系列分子动力学分析研究了单晶铜上基于切削的单原子层去除机理。研究发现报告说,当切削深度减小到原子级时,通过使用倒圆角工具进行机械切削,最小切屑厚度可以减小到单个原子层。基于切削的单原子层去除过程中的材料去除行为表现出四个特征,包括通过剪切应力驱动的位错运动形成切屑,加工表面的弹性变形,原子尺寸效应和尖端半径效应。基于这种理解,提出了一种新的切削模型,以研究基于切削的单原子层去除工艺中的材料去除行为,该行为与纳米切削和常规切削方法存在显着差异。结果为原子和接近原子的规模制造技术的研究和开发提供了理论支持。
更新日期:2019-12-06
down
wechat
bug