当前位置: X-MOL 学术Sol. Energy Mater. Sol. Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal stability improvement of metal oxide-based contacts for silicon heterojunction solar cells
Solar Energy Materials and Solar Cells ( IF 6.9 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.solmat.2019.110324
Jinyoun Cho , Hariharsudan Sivaramakrishnan Radhakrishnan , Rajiv Sharma , Maria Recaman Payo , Maarten Debucquoy , Arvid van der Heide , Ivan Gordon , Jozef Szlufcik , Jef Poortmans

Abstract Metal oxides are interesting materials for use as carrier-selective contacts for the fabrication of doping-free silicon solar cells. In particular, MoOx and TiOx have been successfully used as hole and electron selective contacts in silicon solar cells, respectively. However, it is of paramount importance that good thermal stability is achieved in such contacts. In our work, we combined i-a-Si:H/MoOx based hole contacts with electron contacts featuring i- a -Si:H/ T iOx/l o w work function m etal (ATOM) to fabricate doping-free cells, termed MolyATOM cells. We found that the thermal stability of the ATOM contact was improved when the i-a-Si:H was annealed (300 °C for 20 min in N2) before depositing TiOx (i.e. pre-TiOx annealing), which reduces the hydrogen content in i-a-Si:H by about 27 %rel, and thereby the H-related degradation of the ATOM contact characteristics. Moreover, it was found that reducing the thickness of the low-work function metal on top of the TiOx enhanced the thermal stability of the ATOM contact. With these adaptations, the MolyATOM cell efficiency was improved by 3.5 %abs, with the highest efficiency of 17.6%. Moreover, the cells show improved thermal stability after the above-mentioned pre-TiOx annealing, which is confirmed by annealing tests at cell level as well as damp-heat tests at module level. The insights of this study could be used to tailor other metal-oxide based electron or hole contacts.

中文翻译:

用于硅异质结太阳能电池的金属氧化物基触点的热稳定性改进

摘要 金属氧化物是一种有趣的材料,可用作制造无掺杂硅太阳能电池的载流子选择性接触。特别是,MoOx 和 TiOx 已分别成功地用作硅太阳能电池中的空穴和电子选择性接触。然而,在这种接触中实现良好的热稳定性是最重要的。在我们的工作中,我们将基于 ia-Si:H/MoOx 的空穴触点与具有 i-a-Si:H/T iOx/低功函数金属 (ATOM) 的电子触点相结合,以制造无掺杂电池,称为 MolyATOM 电池。我们发现,在沉积 TiOx 之前(即预 TiOx 退火)对 ia-Si:H 进行退火(在 N2 中 300 °C 下 20 分钟)时,ATOM 触点的热稳定性得到改善,这降低了 ia-Si:H 中的氢含量。 Si:H 约 27%rel,从而导致 ATOM 接触特性的 H 相关退化。此外,还发现降低 TiOx 顶部低功函数金属的厚度可增强 ATOM 接触的热稳定性。通过这些调整,MolyATOM 电池效率提高了 3.5% abs,最高效率为 17.6%。此外,电池在上述 TiOx 前退火后显示出改善的热稳定性,这通过电池级的退火测试以及模块级的湿热测试得到证实。这项研究的见解可用于定制其他基于金属氧化物的电子或空穴接触。MolyATOM 电池效率提高了 3.5%abs,最高效率为 17.6%。此外,电池在上述 TiOx 前退火后显示出改善的热稳定性,这通过电池级的退火测试以及模块级的湿热测试得到证实。这项研究的见解可用于定制其他基于金属氧化物的电子或空穴接触。MolyATOM 电池效率提高了 3.5%abs,最高效率为 17.6%。此外,电池在上述 TiOx 前退火后显示出改善的热稳定性,这通过电池级的退火测试以及模块级的湿热测试得到证实。这项研究的见解可用于定制其他基于金属氧化物的电子或空穴接触。
更新日期:2020-03-01
down
wechat
bug