当前位置: X-MOL 学术Crit. Rev. Solid State Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene for Thermoelectric Applications: Prospects and Challenges
Critical Reviews in Solid State and Materials Sciences ( IF 10.8 ) Pub Date : 2017-05-10 , DOI: 10.1080/10408436.2017.1300871
Tabitha A. Amollo 1 , Genene T. Mola 2 , M. S. K. Kirui 3 , Vincent O. Nyamori 1
Affiliation  

Thermoelectric power generators require high-efficiency thermoelectric materials to transform waste heat into usable electrical energy. An efficient thermoelectric material should have high Seebeck coefficient and excellent electrical conductivity as well as low thermal conductivity. Graphene, the first truly 2D nanomaterial, exhibits unique properties which suit it for use in thermoelectric power generators, but its application in thermoelectrics is limited by the high thermal conductivity and low Seebeck coefficient resulting from its gapless spectrum. However, with the possibility of modification of graphene's band structure to enhance Seebeck coefficient and the reduction of its thermal conductivity, it is an exciting prospect for application in thermoelectric power generation. This article examines the electronic, optical, thermal, and thermoelectric properties of graphene systems. The factors that contribute to these material properties in graphene systems like charge carriers scattering mechanisms are discussed. A salient aspect of this article is a synergistic perspective on the reduction of thermal conductivity and improvement of Seebeck coefficient of graphene for a higher thermoelectric energy conversion efficiency. In this regard, the effect of graphene nanostructuring and doping, forming of structural defects, as well as graphene integration into a polymer matrix on its thermal conductivity and Seebeck coefficient is elucidated.

中文翻译:

石墨烯在热电领域的应用:前景与挑战

热电发电机需要高效的热电材料才能将废热转化为可用的电能。高效的热电材料应具有高塞贝克系数,优异的电导率以及低热导率。石墨烯是第一种真正的2D纳米材料,具有独特的性能,适合用于热电发电机,但由于其无隙光谱,其在高热导率和低塞贝克系数方面的局限性限制了它在热电学中的应用。然而,通过修饰石墨烯的能带结构以提高塞贝克系数并降低其热导率的可能性,在热电发电中的应用具有令人兴奋的前景。本文研究了电子,光学,热学,和石墨烯体系的热电性能。讨论了在石墨烯系统中影响这些材料性能的因素,例如电荷载流子散射机理。本文的一个突出方面是在降低导热系数和改善石墨烯塞贝克系数以实现更高的热电能量转换效率方面的协同观点。在这方面,阐明了石墨烯纳米结构和掺杂,结构缺陷的形成以及石墨烯集成到聚合物基质中对其导热率和塞贝克系数的影响。本文的一个突出方面是在降低导热系数和改善石墨烯塞贝克系数以实现更高的热电能量转换效率方面的协同观点。在这方面,阐明了石墨烯纳米结构和掺杂,结构缺陷的形成以及石墨烯集成到聚合物基质中对其导热率和塞贝克系数的影响。本文的一个突出方面是在降低导热系数和改善石墨烯塞贝克系数以实现更高的热电能量转换效率方面的协同观点。在这方面,阐明了石墨烯纳米结构和掺杂,结构缺陷的形成以及石墨烯集成到聚合物基质中对其导热率和塞贝克系数的影响。
更新日期:2018-03-14
down
wechat
bug