当前位置: X-MOL 学术J. Electrochem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the Road to a Multi-Coaxial-Cable Battery: Development of a Novel 3D-Printed Composite Solid Electrolyte
Journal of The Electrochemical Society ( IF 3.9 ) Pub Date : 2019-12-03 , DOI: 10.1149/2.0032007jes
Heftsi Ragones 1 , Adi Vinegrad 1 , Gilat Ardel 1 , Meital Goor 1 , Yossi Kamir 1 , Moty Marcos Dorfman 1 , Alexander Gladkikh 2 , Diana Golodnitsky 1, 2
Affiliation  

The high areal-energy and power requirements of advanced microelectronic devices favor the choice of a lithium-ion system, since it provides the highest energy density of available battery technologies suitable for a variety of applications. Several attempts have been made to produce primary and secondary thin‐film batteries utilizing printing techniques. These technologies are still at an early stage, and most currently-printed batteries exploit printed electrodes sandwiching self‐standing commercial polymer membranes, produced by conventional extrusion or papermaking techniques, followed by soaking in non-aqueous liquid electrolytes. In this work, we suggest a novel flexible-battery design and report the initial results of development and characterization of novel 3D printed all-solid-state electrolytes prepared by fused-filament fabrication (FFF). The electrolytes are composed of LiTFSI, polyethylene oxide (PEO), which is a known lithium-ion conductor, and polylactic acid (PLA) for enhanced mechanical properties and high-temperature durability. The 3D printed electrolytes were characterized by means of ESEM imaging, mass spectroscopy, differential scanning calorimetry (DSC) and electrochemical impedance spectroscopy (EIS). TOFSIMS analysis reveals formation of lithium complexes with both polymers. The flexible all-solid LiTFSI-based electrolyte exhibited bulk ionic conductivity of 3 × 10−5 S/cm at 90°C and 156ohmxcm2 resistance of the solid electrolyte interphase (SEI). We believe that the coordination mechanism of the lithium cation by the oxygen of the PLA chain is similar to that of PEO and local relaxation motions of PLA chain segments could promote Li-ion hopping between oxygens of adjacent CH-O groups. What is meant by this is that PLA not only improves the mechanical properties of PEO, but also serves as a Li-ion-conducting medium. These results pave the way for a fully printed solid battery, which enables free-form-factor flexible geometries.

中文翻译:

在多同轴电缆电池的道路上:新型3D打印复合固体电解质的开发

先进微电子设备对面能和功率的高要求,促使人们选择锂离子系统,因为它提供了适用于各种应用的现有电池技术中最高的能量密度。已经进行了多次尝试以印刷技术生产一次和二次薄膜电池的尝试。这些技术仍处于早期阶段,大多数当前印刷的电池都使用印刷电极,将印刷的电极夹在中间,这些电极通过传统的挤出或造纸技术生产,然后将其浸泡在非水液体电解质中,从而形成自立式商用聚合物膜。在这项工作中,我们提出了一种新颖的柔性电池设计,并报告了通过熔丝制造(FFF)制备的新颖3D打印全固态电解质的开发和表征的初步结果。电解质由LiTFSI,已知的锂离子导体的聚环氧乙烷(PEO)和聚乳酸(PLA)组成,以增强机械性能和高温耐久性。通过ESEM成像,质谱,差示扫描量热法(DSC)和电化学阻抗谱(EIS)对3D打印的电解质进行了表征。TOFSIMS分析揭示了两种聚合物均会形成锂络合物。柔性的全固态基于LiTFSI的电解质表现出3×10的整体离子电导率 它是已知的锂离子导体和聚乳酸(PLA),具有增强的机械性能和高温耐久性。通过ESEM成像,质谱,差示扫描量热法(DSC)和电化学阻抗谱(EIS)对3D打印的电解质进行了表征。TOFSIMS分析揭示了两种聚合物均会形成锂络合物。柔性的全固态基于LiTFSI的电解质表现出3×10的整体离子电导率 它是已知的锂离子导体和聚乳酸(PLA),具有增强的机械性能和高温耐久性。通过ESEM成像,质谱,差示扫描量热法(DSC)和电化学阻抗谱(EIS)对3D打印的电解质进行了表征。TOFSIMS分析揭示了两种聚合物均会形成锂络合物。柔性的全固态基于LiTFSI的电解质表现出3×10的整体离子电导率在90°C下为-5 S / cm,固体电解质中间相(SEI)的电阻为156ohmxcm 2。我们认为,PLA链上的氧与锂阳离子的配位机理与PEO相似,PLA链段的局部弛豫运动可促进相邻CH-O基团的氧之间的锂离子跳跃。这意味着PLA不仅改善了PEO的机械性能,而且还充当了传导锂离子的介质。这些结果为完全印刷的固态电池铺平了道路,该电池可实现自由形状因数的灵活几何形状。
更新日期:2019-12-04
down
wechat
bug