当前位置: X-MOL 学术npj Quant. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Persistence of spin memory in a crystalline, insulating phase-change material
npj Quantum Materials ( IF 5.7 ) Pub Date : 2019-12-02 , DOI: 10.1038/s41535-019-0196-6
Johannes Reindl , Hanno Volker , Nicholas P. Breznay , Matthias Wuttig

The description of disorder-induced electron localization by Anderson over 60 years ago began a quest for novel phenomena emerging from electronic interactions in the presence of disorder. Even today, the interplay of interactions and disorder remains incompletely understood. This holds in particular for strongly disordered materials where charge transport depends on ‘hopping’ between localized sites. Here we report an unexpected spin sensitivity of the electrical conductivity at the transition from diffusive to hopping conduction in a material that combines strong spin-orbit coupling and weak inter-electronic interactions. In thin films of the disordered crystalline phase change material SnSb2Te4, a distinct change in electrical conductance with applied magnetic field is observed at low temperatures. This magnetoconductance changes sign and becomes anisotropic at the disorder-driven crossover from strongly localized (hopping) to weakly localized (diffusive) electron motion. The positive and isotropic magnetoconductance arises from disruption of spin correlations that inhibit hopping transport. This experimental observation of a recently hypothesized ‘spin memory’ demonstrates the spin plays a previously overlooked role in the disorder-driven transition between weak and strong localization in materials with strong spin–orbit interactions.



中文翻译:

晶体绝缘相变材料中自旋记忆的持久性

60年前,安德森(Anderson)对无序诱发的电子定位的描述开始了对在有序存在下电子相互作用中出现的新颖现象的追求。即使在今天,相互作用和无序的相互作用仍未完全理解。这尤其适用于严重无序的材料,在这些材料中,电荷传输取决于局部位置之间的“跳跃”。在这里,我们报告了一种结合了强自旋轨道耦合和弱电子间相互作用的材料中从扩散传导到跳跃传导的跃迁,其电导率具有出乎意料的自旋敏感性。在无序晶体相变材料的薄膜中SnSb 2 Te 4,在低温下观察到电导率随施加磁场的变化。这种磁导会改变符号,并在无序驱动的交叉处从强局限性(跳跃)运动到弱局限性(扩散)电子运动而变成各向异性。正向和各向同性的磁导来自自旋相关性的破坏,自旋相关性抑制跳频传输。对最近假设的“自旋记忆”的实验观察表明,自旋在具有强自旋轨道相互作用的材料的弱和强局部化之间的无序驱动的过渡中起着先前被忽视的作用。

更新日期:2019-12-02
down
wechat
bug