当前位置: X-MOL 学术Nanoscale Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental Demonstration of Electromagnetically Induced Transparency in a Conductively Coupled Flexible Metamaterial with Cheap Aluminum Foil.
Nanoscale Research Letters ( IF 5.418 ) Pub Date : 2019-12-02 , DOI: 10.1186/s11671-019-3180-y
Jie Hu 1 , Tingting Lang 1 , Weihang Xu 2 , Jianjun Liu 2 , Zhi Hong 2
Affiliation  

We propose a conductively coupled terahertz metallic metamaterial exhibiting analog of electromagnetically induced transparency (EIT), in which the bright and dark mode antennae interact via surface currents rather than near-field coupling. Aluminum foil, which is very cheap and often used in food package, is used to fabricate our metamaterials. Thus, our metamaterials are also flexible metamaterials. In our design, aluminum bar resonators and aluminum split ring resonators (SRRs) are connected (rather than separated) in the form of a fork-shaped structure. We conduct a numerical simulation and an experiment to analyze the mechanism of the proposed metamaterial. The surface current due to LSP resonance (bright mode) flows along different paths, and a potential difference is generated at the split gaps of the SRRs. Thus, an LC resonance (dark mode) is induced, and the bright mode is suppressed, resulting in EIT. The EIT-like phenomenon exhibited by the metamaterial is induced by surface conducting currents, which may provide new ideas for the design of EIT metamaterials. Moreover, the process of fabricating microstructures on flexible substrates can provide a reference for producing flexible microstructures in the future.

中文翻译:

具有廉价铝箔的导电耦合柔性超材料中电磁感应透明性的实验演示。

我们提出了一种导电耦合的太赫兹金属超材料,该材料表现出电磁感应透明性(EIT),其中明暗模式天线通过表面电流而不是近场耦合相互作用。铝箔非常便宜,通常用于食品包装,用于制造我们的超材料。因此,我们的超材料也是柔性超材料。在我们的设计中,铝条谐振器和铝裂环谐振器(SRR)以叉形结构的形式连接(而不是分开)。我们进行了数值模拟和实验,以分析所提出的超材料的机理。由于LSP共振(亮模式)而产生的表面电流沿着不同的路径流动,并且在SRR的裂隙处会产生电势差。因此,产生LC谐振(暗模式),并且抑制亮模式,从而导致EIT。超材料表现出的类EIT现象是由表面传导电流引起的,这可能为EIT超材料的设计提供新的思路。而且,在柔性基板上制造微结构的工艺可以为将来生产柔性微结构提供参考。
更新日期:2019-12-02
down
wechat
bug