当前位置: X-MOL 学术Mater. Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing carbon conductive filament memristor devices for memory and electronic synapse applications
Materials Horizons ( IF 13.3 ) Pub Date : 2019-11-29 , DOI: 10.1039/c9mh01684h
Zhenyu Zhou 1, 2, 3, 4, 5 , Jianhui Zhao 1, 2, 3, 4, 5 , Andy Paul Chen 6, 7, 8, 9 , Yifei Pei 1, 2, 3, 4, 5 , Zuoao Xiao 1, 2, 3, 4, 5 , Gong Wang 1, 2, 3, 4, 5 , Jingsheng Chen 6, 7, 8, 9 , Guangsheng Fu 1, 2, 3, 4, 5 , Xiaobing Yan 1, 2, 3, 4, 5
Affiliation  

Electronic synaptic memristor systems have the potential to bring revolutionary change to traditional computer structures and to lay a solid foundation for the development of computer architectures simulating artificial brains. Among them, silver (Ag) or copper (Cu) filament-based memristor devices have increasingly attracted attention due to their excellent functional properties in plasticity and as memristors. However, the randomly dynamic process of nucleation during device fabrication results in nonuniform switching parameters. Here, we demonstrate the viability of a high-performance neuromorphic memristor device based on a carbon conductive filament mechanism, with the advantages of high switching stability and low power consumption. The memristor is also able to emulate faithfully different functions of artificial synapses, including paired-pulse facilitation (PPF) and spike-timing-dependent plasticity (STDP). According to detailed electron energy loss spectroscopy (EELS) and transmission electron microscopy (TEM) characterization, it is confirmed that carbon conductive filaments are formed in aluminum nitride (AlN) films comprising the middle layer of the memristor. First principles calculations provide insight into the energetics of defects involved in the diffusion of carbon atoms into the AlN film. This work probes the viability of a new physical conduction mechanism for use in neuromorphic memristor performance, with evidence of improved device performance.

中文翻译:

设计用于记忆和电子突触应用的碳导电丝忆阻器

电子突触忆阻器系统具有为传统计算机结构带来革命性变化的潜力,并为模拟人造大脑的计算机体系结构的发展奠定了坚实的基础。其中,基于银(Ag)或铜(Cu)丝的忆阻器器件由于其优异的可塑性和作为忆阻器的功能特性而受到越来越多的关注。但是,器件制造过程中成核的随机动态过程会导致切换参数不一致。在这里,我们展示了一种基于碳导电丝机理的高性能神经形态忆阻器器件的可行性,该器件具有高开关稳定性和低功耗的优点。忆阻器还能够忠实地模拟人造突触的不同功能,包括成对脉冲促进(PPF)和依赖于尖峰时序的可塑性(STDP)。根据详细的电子能量损失谱(EELS)和透射电子显微镜(TEM)表征,可以确定在包含忆阻器中间层的氮化铝(AlN)膜中形成了碳导电丝。第一性原理计算为洞悉与碳原子扩散到AlN膜中所涉及的缺陷的能量学有关。这项工作探讨了用于神经形态忆阻器性能的新型物理传导机制的可行性,并证明了器件性能得到了改善。可以确定,在构成忆阻器中间层的氮化铝(AlN)膜中形成了碳导电丝。第一性原理计算为洞悉碳原子扩散到AlN膜中所涉及的缺陷的能量学提供了见识。这项工作探讨了用于神经形态忆阻器性能的新型物理传导机制的可行性,并证明了器件性能得到了改善。可以确定,在构成忆阻器中间层的氮化铝(AlN)膜中形成了碳导电丝。第一性原理计算为洞悉与碳原子扩散到AlN膜中所涉及的缺陷的能量学有关。这项工作探讨了用于神经形态忆阻器性能的新型物理传导机制的可行性,并证明了器件性能得到了改善。
更新日期:2019-11-29
down
wechat
bug