当前位置: X-MOL 学术J. Opt. Soc. Am. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of volume-phase-grating characteristics that a variety of refractive index distributions influence. Part 2: Analysis of spectral bandwidths and angular bandwidths, and the derivation of these equations.
Journal of the Optical Society of America A ( IF 1.9 ) Pub Date : 2019-12-01 , DOI: 10.1364/josaa.36.002129
K Nakajima

To expand the spectral bandwidths with high diffraction efficiency of volume phase (VP) gratings, it is important to know the influence of a variety of refractive index distributions (RIDs) inside the recording material on the bandwidths. The influence of various graded types of RIDs on the full width at half the maximum of the spectral bandwidth (${\lambda _{\rm FWHM}}$λFWHM) and the angular bandwidth (${\theta _{\rm FWHM}}$θFWHM) is investigated in the Bragg regime. It becomes clear that various graded types of RIDs influence their bandwidths and the characteristics, and the combination of the RIDs and refractive index modulation (${{ n}_m}$nm) is the most important factor for obtaining the large bandwidths of VP gratings. Theoretically, the ${\lambda _{\rm FWHM}}$λFWHM are obtained as the values of 149.7 nm and 257.6 nm (${{ n}_m} = {0.045}$nm=0.045) for the wavelengths of 900 nm and 1550 nm, respectively. Furthermore, I have succeeded in developing the expression for ${\lambda _{\rm FWHM}}$λFWHM and ${\theta _{\rm FWHM}}$θFWHM, using the proportional characteristics of VP gratings investigated in this work. The correlative coupling-length coefficients "G-factors" devised as a variety of RID functions in the previous paper are introduced into them. It is apparent that the derived equations of the bandwidths can be adapted to any graded type of RID that changes continuously from a triangular type to a rectangular type of VP grating, which has not been reported yet. The equations have made it easy to design ${\lambda _{\rm FWHM}}$λFWHM and ${\theta _{\rm FWHM}}$θFWHM of VP gratings.

中文翻译:

分析各种折射率分布影响的体相光栅特性。第2部分:频谱带宽和角带宽的分析,以及这些方程的推导。

为了利用体相(VP)光栅的高衍射效率扩展光谱带宽,重要的是要知道记录材料内部各种折射率分布(RID)对带宽的影响。各种渐变类型的RID对光谱宽度($ {\ lambda _ {\ rm FWHM}} $λFWHM)最大值和角带宽($ {\ theta _ {\ rm FWHM}的一半的全宽的影响} $θFWHM)在布拉格制度中进行了研究。显然,各种渐变类型的RID会影响其带宽和特性,并且RID和折射率调制($ {{n} _m} $ nm)的组合是获得VP光栅大带宽的最重要因素。 。理论上,获得$ {\ lambda _ {\ rm FWHM}} $λFWHM作为149.7 nm和257.6 nm的值($ {{n} _m} = {0。045} $ nm = 0.045)分别针对900 nm和1550 nm的波长。此外,我已经使用这项工作中研究的VP光栅的比例特性成功地开发了$ {\ lambda _ {\ rm FWHM}} $λFWHM和$ {\ theta _ {\ rm FWHM}} $θFWHM的表达式。将介绍为前一论文中的各种RID函数的相关耦合长度系数“ G因子”引入其中。显然,导出的带宽方程可以适用于从三角型到矩形型VP光栅连续变化的任何渐变类型的RID(尚未报道)。这些方程使设计VP光栅的$ {\ lambda _ {\ rm FWHM}} $λFWHM和$ {\ theta _ {\ rm FWHM}} $θFWHM变得容易。我已经使用这项工作中研究的VP光栅的比例特性成功地开发了$ {\ lambda _ {\ rm FWHM}} $λFWHM和$ {\ theta _ {\ rm FWHM}} $θFWHM的表达式。将介绍为前一论文中的各种RID函数的相关耦合长度系数“ G因子”引入其中。显然,导出的带宽方程可以适用于从三角型到矩形型VP光栅连续变化的任何渐变类型的RID(尚未报道)。这些方程使设计VP光栅的$ {\ lambda _ {\ rm FWHM}} $λFWHM和$ {\ theta _ {\ rm FWHM}} $θFWHM变得容易。我已经使用这项工作中研究的VP光栅的比例特性成功地开发了$ {\ lambda _ {\ rm FWHM}} $λFWHM和$ {\ theta _ {\ rm FWHM}} $θFWHM的表达式。将介绍为前一论文中的各种RID函数的相关耦合长度系数“ G因子”引入其中。显然,导出的带宽方程可以适用于从三角型到矩形型VP光栅连续变化的任何渐变类型的RID(尚未报道)。这些方程使设计VP光栅的$ {\ lambda _ {\ rm FWHM}} $λFWHM和$ {\ theta _ {\ rm FWHM}} $θFWHM变得容易。使用在这项工作中研究的VP光栅的比例特性。将介绍为前一论文中的各种RID函数的相关耦合长度系数“ G因子”引入其中。显然,导出的带宽方程可以适用于从三角型到矩形型VP光栅连续变化的任何渐变类型的RID(尚未报道)。这些方程使设计VP光栅的$ {\ lambda _ {\ rm FWHM}} $λFWHM和$ {\ theta _ {\ rm FWHM}} $θFWHM变得容易。使用在这项工作中研究的VP光栅的比例特性。将介绍为前一论文中的各种RID函数的相关耦合长度系数“ G因子”引入其中。显然,导出的带宽方程可以适用于从三角型到矩形型VP光栅连续变化的任何渐变类型的RID(尚未报道)。这些方程使设计VP光栅的$ {\ lambda _ {\ rm FWHM}} $λFWHM和$ {\ theta _ {\ rm FWHM}} $θFWHM变得容易。显然,导出的带宽方程可以适用于从三角型到矩形型VP光栅连续变化的任何渐变类型的RID(尚未报道)。这些方程使设计VP光栅的$ {\ lambda _ {\ rm FWHM}} $λFWHM和$ {\ theta _ {\ rm FWHM}} $θFWHM变得容易。显然,导出的带宽方程可以适用于从三角型到矩形型VP光栅连续变化的任何渐变类型的RID(尚未报道)。这些方程使设计VP光栅的$ {\ lambda _ {\ rm FWHM}} $λFWHM和$ {\ theta _ {\ rm FWHM}} $θFWHM变得容易。
更新日期:2019-11-28
down
wechat
bug