当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Complex viscosity of helical and doubly helical polymeric liquids from general rigid bead-rod theory
Applied Physics Reviews ( IF 12.750 ) Pub Date : 2019-11-18 , DOI: 10.1063/1.5126860
J. H. Piette, M. A. Kanso

With general rigid bead-rod modeling, we recreate shapes of complex macromolecular structures with beads, by rigidly fixing bead positions relative to one another. General rigid-bead rod theory then attributes the elasticity of polymeric liquids to the orientation that their macromolecules develop during flow. For linear viscoelastic behaviors, this theory has been evaluated for just a few very simple structures: rigid rings, the rigid tridumbbell, and three quadrafunctional branched structures. For oscillatory shear flow, the frequency dependencies of both parts of the complex viscosity are, at least qualitatively, predicted correctly. In this paper, we use general rigid-bead rod theory for the most complex macromolecular architectures to date. We thus explore the role of helix geometry on the complex viscosity of a helical polymeric liquid. Specifically, for both singly and doubly helical structures, we investigate the effects of helix radius, flight length, helix length, and the number of beads per flight on the complex viscosity function, the fluid relaxation time, and the zero-shear values of the steady shear viscosity and of the first normal stress coefficient. As a worked example, we examine specifically deoxyribonucleic acid (DNA). Using general rigid bead-rod theory, we dissect the DNA to see how the first helix, second helix, and then the base pairs each contribute to the complex viscosity. We next explore the rheological implications of gene replication to find that the unzipping of DNA into a pair of single strands is viscostatic.
更新日期:2019-11-28

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug