当前位置: X-MOL 学术J. Cardiovasc. Magn. Reson. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multipoint 5D flow cardiovascular magnetic resonance - accelerated cardiac- and respiratory-motion resolved mapping of mean and turbulent velocities.
Journal of Cardiovascular Magnetic Resonance ( IF 6.4 ) Pub Date : 2019-07-22 , DOI: 10.1186/s12968-019-0549-0
Jonas Walheim 1 , Hannes Dillinger 1 , Sebastian Kozerke 1
Affiliation  

BACKGROUND Volumetric quantification of mean and fluctuating velocity components of transient and turbulent flows promises a comprehensive characterization of valvular and aortic flow characteristics. Data acquisition using standard navigator-gated 4D Flow cardiovascular magnetic resonance (CMR) is time-consuming and actual scan times depend on the breathing pattern of the subject, limiting the applicability of the method in a clinical setting. We sought to develop a 5D Flow CMR framework which combines undersampled data acquisition including multipoint velocity encoding with low-rank image reconstruction to provide cardiac- and respiratory-motion resolved assessment of velocity maps and turbulent kinetic energy in fixed scan times. METHODS Data acquisition and data-driven motion state detection was performed using an undersampled Cartesian tiny Golden angle approach. Locally low-rank (LLR) reconstruction was implemented to exploit correlations among heart phases and respiratory motion states. To ensure accurate quantification of mean and turbulent velocities, a multipoint encoding scheme with two velocity encodings per direction was incorporated. Velocity-vector fields and turbulent kinetic energy (TKE) were obtained using a Bayesian approach maximizing the posterior probability given the measured data. The scan time of 5D Flow CMR was set to 4 min. 5D Flow CMR with acceleration factors of 19 .0 ± 0.21 (mean ± std) and velocity encodings (VENC) of 0.5 m/s and 1.5 m/s per axis was compared to navigator-gated 2x SENSE accelerated 4D Flow CMR with VENC = 1.5 m/s in 9 subjects. Peak velocities and peak flow were compared and magnitude images, velocity and TKE maps were assessed. RESULTS While net scan time of 5D Flow CMR was 4 min independent of individual breathing patterns, the scan times of the standard 4D Flow CMR protocol varied depending on the actual navigator gating efficiency and were 17.8 ± 3.9 min on average. Velocity vector fields derived from 5D Flow CMR in the end-expiratory state agreed well with data obtained from the navigated 4D protocol (normalized root-mean-square error 8.9 ± 2.1%). On average, peak velocities assessed with 5D Flow CMR were higher than for the 4D protocol (3.1 ± 4.4%). CONCLUSIONS Respiratory-motion resolved multipoint 5D Flow CMR allows mapping of mean and turbulent velocities in the aorta in 4 min.

中文翻译:

多点5D流动心血管磁共振-解析的平均和湍流速度的加速的心脏和呼吸运动映射。

背景技术瞬态和湍流的平均和脉动速度分量的体积量化保证了对瓣膜和主动脉血流特征的全面表征。使用标准导航器选通的4D流心血管磁共振(CMR)进行数据采集非常耗时,实际扫描时间取决于对象的呼吸模式,从而限制了该方法在临床环境中的适用性。我们寻求开发一个5D Flow CMR框架,该框架结合了欠采样数据采集(包括多点速度编码)和低秩图像重建,以在固定扫描时间内对速度图和湍流动能提供心脏和呼吸运动分辨的评估。方法采用欠采样笛卡尔微小金角法进行数据采集和数据驱动的运动状态检测。实施局部低秩(LLR)重建以利用心脏相位和呼吸运动状态之间的相关性。为了确保对平均速度和湍流速度进行准确的量化,并入了一个多点编码方案,每个方向具有两个速度编码。速度矢量场和湍动能(TKE)是使用贝叶斯方法获得的,该方法在给定测量数据的情况下最大程度地提高了后验概率。5D Flow CMR的扫描时间设置为4分钟。将加速因子为19 .0±0.21(平均±标准差),速度编码(VENC)为每轴0.5 m / s和1.5 m / s的5D Flow CMR与导航器选通的2x SENSE加速的4D Flow CMR(VENC = 1.5 m / s在9个主题中。比较峰速度和峰流量,并评估幅值图像,速度和TKE图。结果尽管5D Flow CMR的净扫描时间为4分钟(与个人呼吸模式无关),但标准4D Flow CMR协议的扫描时间根据实际的导航门控效率而有所不同,平均为17.8±3.9分钟。从呼气末状态的5D Flow CMR导出的速度矢量场与从导航4D协议获得的数据非常吻合(归一化均方根误差8.9±2.1%)。平均而言,使用5D Flow CMR评估的峰值速度高于4D协议(3.1±4.4%)。结论呼吸运动分辨多点5D流CMR可以在4分钟内绘制主动脉的平均速度和湍流速度。评估了速度和TKE图。结果尽管5D Flow CMR的净扫描时间为4分钟(与个人呼吸模式无关),但标准4D Flow CMR协议的扫描时间根据实际的导航门控效率而有所不同,平均为17.8±3.9分钟。从呼气末状态的5D Flow CMR导出的速度矢量场与从导航4D协议获得的数据非常吻合(归一化均方根误差为8.9±2.1%)。平均而言,使用5D Flow CMR评估的峰值速度高于4D协议(3.1±4.4%)。结论呼吸运动分辨多点5D流CMR可以在4分钟内绘制主动脉的平均速度和湍流速度。评估了速度和TKE图。结果尽管5D Flow CMR的净扫描时间为4分钟(与个人呼吸模式无关),但标准4D Flow CMR协议的扫描时间根据实际的导航门控效率而有所不同,平均为17.8±3.9分钟。从呼气末状态的5D Flow CMR导出的速度矢量场与从导航4D协议获得的数据非常吻合(归一化均方根误差8.9±2.1%)。平均而言,使用5D Flow CMR评估的峰值速度高于4D协议(3.1±4.4%)。结论呼吸运动分辨多点5D流CMR可以在4分钟内绘制主动脉的平均速度和湍流速度。标准4D Flow CMR协议的扫描时间根据实际的导航器选通效率而有所不同,平均为17.8±3.9分钟。从呼气末状态的5D Flow CMR导出的速度矢量场与从导航4D协议获得的数据非常吻合(归一化均方根误差8.9±2.1%)。平均而言,使用5D Flow CMR评估的峰值速度高于4D协议(3.1±4.4%)。结论呼吸运动分辨多点5D流CMR可以在4分钟内绘制主动脉的平均速度和湍流速度。标准4D Flow CMR协议的扫描时间根据实际的导航器选通效率而有所不同,平均为17.8±3.9分钟。从呼气末状态的5D Flow CMR导出的速度矢量场与从导航4D协议获得的数据非常吻合(归一化均方根误差8.9±2.1%)。平均而言,使用5D Flow CMR评估的峰值速度高于4D协议(3.1±4.4%)。结论呼吸运动分辨多点5D流CMR可以在4分钟内绘制主动脉的平均速度和湍流速度。从呼气末状态的5D Flow CMR导出的速度矢量场与从导航4D协议获得的数据非常吻合(归一化均方根误差8.9±2.1%)。平均而言,使用5D Flow CMR评估的峰值速度高于4D协议(3.1±4.4%)。结论呼吸运动分辨多点5D流CMR可以在4分钟内绘制主动脉的平均速度和湍流速度。从呼气末状态的5D Flow CMR导出的速度矢量场与从导航4D协议获得的数据非常吻合(归一化均方根误差8.9±2.1%)。平均而言,使用5D Flow CMR评估的峰值速度高于4D协议(3.1±4.4%)。结论呼吸运动分辨多点5D流CMR可以在4分钟内绘制主动脉的平均速度和湍流速度。
更新日期:2019-07-22
down
wechat
bug