当前位置: X-MOL 学术BMC Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of a poly(ε-decalactone)/silver nanowire composite as an electrically conducting neural interface biomaterial.
BMC Biomedical Engineering Pub Date : 2019-04-15 , DOI: 10.1186/s42490-019-0010-3
Katarzyna Krukiewicz 1, 2 , Jorge Fernandez 3 , Małgorzata Skorupa 2 , Daria Więcławska 2 , Anup Poudel 1 , Jose-Ramon Sarasua 4 , Leo R Quinlan 5 , Manus J P Biggs 1
Affiliation  

Advancement in polymer technologies, facilitated predominantly through chemical engineering approaches or through the identification and utilization of novel renewable resources, has been a steady focus of biomaterials research for the past 50 years. Aliphatic polyesters have been exploited in numerous biomedical applications including the formulation of soft-tissue sutures, bone fixation devices, cardiovascular stents etc. Biomimetic ‘soft’ polymer formulations are of interest in the design of biological interfaces and specifically, in the development of implantable neuroelectrode systems intended to interface with neural tissues. Critically, soft polymer formulations have been shown to address the challenges associated with the disregulation of mechanotransductive processes and micro-motion induced inflammation at the electrode/tissue interface. In this study, a polyester-based poly(ε-decalactone)/silver nanowire (EDL:Ag) composite was investigated as a novel electrically active biomaterial with neural applications. Neural interfaces were formulated through spin coating of a polymer/nanowire formulation onto the surface of a Pt electrode to form a biocompatible EDL matrix supported by a percolated network of silver nanowires. As-formed EDL:Ag composites were characterized by means of infrared spectroscopy, scanning electron microscopy and electrochemical methods, with their cytocompatibility assessed using primary cultures of a mixed neural population obtained from the ventral mesencephalon of Sprague-Dawley rat embryos. Electrochemical characterization of various EDL:Ag composites indicated EDL:Ag 10:1 as the most favourable formulation, exhibiting high charge storage capacity (8.7 ± 1.0 mC/cm2), charge injection capacity (84.3 ± 1.4 μC/cm2) and low impedance at 1 kHz (194 ± 28 Ω), outperforming both pristine EDL and bare Pt electrodes. The in vitro biological evaluation showed that EDL:Ag supported significant neuron viability in culture and to promote neurite outgrowth, which had the average length of 2300 ± 6 μm following 14 days in culture, 60% longer than pristine EDL and 120% longer than bare Pt control substrates. EDL:Ag nanocomposites are shown to serve as robust neural interface materials, possessing favourable electrochemical characteristics together with high neural cytocompatibility.

中文翻译:

聚(ε-癸内酯)/银纳米线复合材料作为导电神经界面生物材料的分析。

过去 50 年来,主要通过化学工程方法或通过识别和利用新型可再生资源促进聚合物技术的进步一直是生物材料研究的稳定焦点。脂肪族聚酯已在许多生物医学应用中得到应用,包括软组织缝合线、骨固定装置、心血管支架等的配方。仿生“软”聚合物配方在生物界面的设计中很受关注,特别是在可植入神经电极的开发中旨在与神经组织交互的系统。至关重要的是,软聚合物配方已被证明可以解决与机械传导过程失调和电极/组织界面处的微运动引起的炎症相关的挑战。在这项研究中,基于聚酯的聚 (ε-癸内酯)/银纳米线 (EDL:Ag) 复合材料作为一种具有神经应用的新型电活性生物材料进行了研究。通过将聚合物/纳米线制剂旋涂到 Pt 电极的表面上来形成神经界面,以形成由银纳米线的渗透网络支持的生物相容性 EDL 基质。通过红外光谱、扫描电子显微镜和电化学方法对所形成的 EDL:Ag 复合材料进行了表征,并使用从 Sprague-Dawley 大鼠胚胎腹侧中脑获得的混合神经群的原代培养物评估了它们的细胞相容性。各种 EDL:Ag 复合材料的电化学表征表明 EDL:Ag 10:1 是最有利的配方,具有高电荷存储容量 (8.7 ± 1. 0 mC/cm2)、电荷注入容量 (84.3 ± 1.4 μC/cm2) 和 1 kHz (194 ± 28 Ω) 的低阻抗,优于原始 EDL 和裸 Pt 电极。体外生物学评估表明,EDL:Ag 支持培养中显着的神经元活力并促进神经突生长,培养 14 天后其平均长度为 2300 ± 6 μm,比原始 EDL 长 60%,比裸 EDL 长 120% Pt 控制基板。EDL:Ag 纳米复合材料被证明可用作坚固的神经界面材料,具有良好的电化学特性和高神经细胞相容性。Ag 支持培养中显着的神经元活力并促进神经突生长,其在培养 14 天后的平均长度为 2300 ± 6 μm,比原始 EDL 长 60%,比裸 Pt 对照底物长 120%。EDL:Ag 纳米复合材料被证明可用作坚固的神经界面材料,具有良好的电化学特性和高神经细胞相容性。Ag 支持培养中显着的神经元活力并促进神经突生长,其在培养 14 天后的平均长度为 2300 ± 6 μm,比原始 EDL 长 60%,比裸 Pt 对照底物长 120%。EDL:Ag 纳米复合材料被证明可用作坚固的神经界面材料,具有良好的电化学特性和高神经细胞相容性。
更新日期:2020-04-22
down
wechat
bug