当前位置: X-MOL 学术Mater. Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials
Materials Horizons ( IF 13.3 ) Pub Date : 2019-11-25 , DOI: 10.1039/c9mh01660k
Ming-Yu Li 1, 2, 3, 4, 5 , Muni Yu 1, 2, 3, 4 , Shenglin Jiang 1, 2, 3, 4, 5 , Sisi Liu 1, 2, 3, 4 , Hezhuang Liu 4, 6, 7, 8 , Hao Xu 4, 6, 7, 8, 9 , Dong Su 1, 2, 3, 4 , Guangzu Zhang 1, 2, 3, 4, 5 , Yuntian Chen 1, 2, 3, 4 , Jiang Wu 4, 6, 7, 8, 9
Affiliation  

The confinement of incident light waves for light–matter interactions, especially for 2D materials with axially limited areas, commonly limits the development of high-performance photodetectors with a wide range of semiconductors in the nanoscale. Herein, we propose an approach to spatially extend the light confinement effect from 2D to 3D with Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures. The incident light beams were initially concentrated by the Au nanostructures (NSs) and the strong plasmon optical interference within AAO matrixes subsequently offered an effective way to trap the light transmitted from the Au NS layers, which was recursively collected by Au NSs. The optical properties of the 3D plasmonic NSs correspondingly exhibited strong morphological dependence, which was evidenced by the tunable intensified Raman vibrational signals of the R6G molecules with a prominent enhancement factor up to 1 × 108. As a consequence, the 3D plasmonic nanostructures can be successfully applied in various dimensional materials and overcome the limited solar energy utilization for the ultra-thin 2D p-MSB nanoribbons, resulting in a high quantum efficiency up to 1068% under 0.5 mW cm−2 UV light illumination.

中文翻译:

用于基于2D和0D材料的高量子效率UV光电探测器的可控3D等离子体纳米结构

用于光-物质相互作用的入射光的限制,尤其是对于轴向受限区域的2D材料,通常限制了具有纳米级半导体的高性能光电探测器的开发。在本文中,我们提出了一种使用Au纳米结构/阳极氧化铝(AAO)基体等离子体结构在空间上将光限制效果从2D扩展到3D的方法。入射光束最初被Au纳米结构(NS)聚集,随后AAO基质中强烈的等离激元光学干涉提供了一种有效的方法来捕获从Au NS层透射的光,而Au NSs递归地收集了这些光。3D等离子体激元NS的光学特性相应地表现出强烈的形态学依赖性,8。结果,3D等离子体纳米结构可以成功地应用于各种尺寸的材料中,并且克服了超薄2D p -MSB纳米带有限的太阳能利用,从而在0.5 mW cm -2下实现了高达1068%的高量子效率。紫外线照明。
更新日期:2019-11-25
down
wechat
bug