当前位置: X-MOL 学术npj Quantum Inform. › 论文详情
Synthesizing multi-phonon quantum superposition states using flux-mediated three-body interactions with superconducting qubits
npj Quantum Information ( IF 8.270 ) Pub Date : 2019-11-21 , DOI: 10.1038/s41534-019-0219-y
Marios Kounalakis, Yaroslav M. Blanter, Gary A. Steele

Massive mechanical resonators operating at the quantum scale can enable a large variety of applications in quantum technologies as well as fundamental tests of quantum theory. Of crucial importance in that direction is both their integrability into state-of-the-art quantum platforms as well as the ability to prepare them in generic quantum states using well-controlled high-fidelity operations. Here, we propose a scheme for controlling a radio-frequency mechanical resonator at the quantum scale using two superconducting transmon qubits that can be integrated on the same chip. Specifically, we consider two qubits coupled via a capacitor in parallel to a superconducting quantum interference device (SQUID), which has a suspended mechanical beam embedded in one of its arms. Following a theoretical analysis of the quantum system, we find that this configuration, in combination with an in-plane magnetic field, can give rise to a tuneable three-body interaction in the single-photon strong-coupling regime, while enabling suppression of the stray qubit-qubit coupling. Using state-of-the-art parameters and qubit operations at single-excitation levels, we numerically demonstrate the possibility of ground-state cooling as well as high-fidelity preparation of mechanical quantum states and qubit-phonon entanglement, i.e. states having negative Wigner functions and obeying non-classical correlations. Our work significantly extends the quantum control toolbox of radio-frequency mechanical resonators and may serve as a promising architecture for integrating such mechanical elements with transmon-based quantum processors.
更新日期:2019-11-21

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug