当前位置: X-MOL 学术J. Compos. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and molecular dynamics study of boron nitride nanotube-reinforced polymethyl methacrylate composites
Journal of Composite Materials ( IF 2.9 ) Pub Date : 2019-05-15 , DOI: 10.1177/0021998319851221
Sumit Sharma 1 , Prince Setia 2 , Rakesh Chandra 1 , Nitin Thakur 1
Affiliation  

Heat dissipation is very essential for the efficient working of electronic devices. There is a widespread demand for high thermal conductivity materials. Boron nitride nanotubes have high thermal conductivity but due to their poor interfacial adhesion with polymers, their use as heat dissipating material is restricted. In this study, a silane-coupling agent has been used to modify the boron nitride nanotubes. These tubes were then inserted in polymethyl methacrylate matrix. Various properties such as thermal conductivity, storage modulus, and loss factor have been predicted. Molecular dynamics simulations have also been used for accurate prediction of the properties of boron nitride nanotubes/polymethyl methacrylate composites. The boron nitride nanotubes weight percentage was varied from 0% to 70% for studying the effect on thermal conductivity, storage modulus, and loss factor. The experimentally obtained thermal conductivity increased rapidly from 0.6 W/mK at 40 wt.% of boron nitride nanotubes to about 3.8 W/mK at 80 wt.% of boron nitride nanotubes in polymethyl methacrylate matrix (an increase of nearly 533%). A similar trend was obtained using molecular dynamics simulations. The storage modulus increased from 2 GPa (for pure polymethyl methacrylate) to about 5 GPa (for 70 wt.% boron nitride nanotubes). The glass transition temperature of boron nitride nanotubes/polymethyl methacrylate composites shifted to higher temperatures with an increase in boron nitride nanotubes weight percentage.

中文翻译:

氮化硼纳米管增强聚甲基丙烯酸甲酯复合材料的实验和分子动力学研究

散热对于电子设备的高效工作非常重要。对高导热材料有广泛的需求。氮化硼纳米管具有高导热性,但由于它们与聚合物的界面粘附性差,它们作为散热材料的使用受到限制。在这项研究中,硅烷偶联剂已被用于改性氮化硼纳米管。然后将这些管插入聚甲基丙烯酸甲酯基质中。已经预测了各种特性,例如热导率、储能模量和损耗因子。分子动力学模拟也已用于准确预测氮化硼纳米管/聚甲基丙烯酸甲酯复合材料的性能。氮化硼纳米管的重量百分比从 0% 到 70% 不等,用于研究对热导率的影响,储能模量和损耗因子。实验获得的热导率从 40 wt.% 氮化硼纳米管时的 0.6 W/mK 迅速增加到聚甲基丙烯酸甲酯基质中 80 wt.% 氮化硼纳米管时的约 3.8 W/mK(增加近 533%)。使用分子动力学模拟获得了类似的趋势。储能模量从 2 GPa(对于纯聚甲基丙烯酸甲酯)增加到约 5 GPa(对于 70 wt.% 氮化硼纳米管)。随着氮化硼纳米管重量百分比的增加,氮化硼纳米管/聚甲基丙烯酸甲酯复合材料的玻璃化转变温度转移到更高的温度。聚甲基丙烯酸甲酯基体中氮化硼纳米管的百分比(增加了近 533%)。使用分子动力学模拟获得了类似的趋势。储能模量从 2 GPa(对于纯聚甲基丙烯酸甲酯)增加到约 5 GPa(对于 70 wt.% 氮化硼纳米管)。随着氮化硼纳米管重量百分比的增加,氮化硼纳米管/聚甲基丙烯酸甲酯复合材料的玻璃化转变温度转移到更高的温度。聚甲基丙烯酸甲酯基体中氮化硼纳米管的百分比(增加了近 533%)。使用分子动力学模拟获得了类似的趋势。储能模量从 2 GPa(对于纯聚甲基丙烯酸甲酯)增加到约 5 GPa(对于 70 wt.% 氮化硼纳米管)。随着氮化硼纳米管重量百分比的增加,氮化硼纳米管/聚甲基丙烯酸甲酯复合材料的玻璃化转变温度转移到更高的温度。
更新日期:2019-05-15
down
wechat
bug