当前位置: X-MOL 学术J. Compos. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication of bulk aluminum-graphene nanocomposite through friction stir alloying
Journal of Composite Materials ( IF 2.9 ) Pub Date : 2019-06-27 , DOI: 10.1177/0021998319859427
Abhishek Sharma 1 , Vyas Mani Sharma 1 , Jinu Paul 1
Affiliation  

Friction stir alloying is primarily employed for the fabrication of surface composite to improve surface properties like hardness, wear resistance, and corrosion resistance without significantly affecting the bulk properties of the alloy. The present study demonstrates the novel method for the fabrication of bulk aluminum-graphene nanoplatelets composite by using friction stir alloying. Here, the novelty is shown through the method of graphene nanoplatelets incorporation in the stir zone. For this purpose, a channel is fabricated on the cross-sectional surface of the aluminum plate and filled with graphene nanoplatelets. It is then covered by the cross-sectional surface of another aluminum plate of same dimensions and friction stir alloying is carried out. Reference material (RM) is also fabricated at the same parameters without any graphene nanoplatelet reinforcements for the performance evaluation of the nanocomposite. The microhardness of the fabricated composite increased by ∼57% as compared to the reference material. However, the tensile strength of the fabricated Al-graphene nanoplatelet composites decreased marginally as compared to reference material. The strengthening of the composite is explained systematically by various mechanisms. The results of microhardness and tensile test were corroborated with various characterization methods such as optical micrographs, scanning electron microscopy, atomic force microscope, and X-ray diffraction.

中文翻译:

通过搅拌摩擦合金化制备块状铝-石墨烯纳米复合材料

搅拌摩擦合金化主要用于制造表面复合材料,以提高表面性能,如硬度、耐磨性和耐腐蚀性,而不会显着影响合金的整体性能。本研究展示了使用搅拌摩擦合金化制备块状铝-石墨烯纳米片复合材料的新方法。在这里,通过在搅拌区中掺入石墨烯纳米片的方法展示了新颖性。为此,在铝板的横截面上制造了一个通道,并用石墨烯纳米片填充。然后用另一块相同尺寸的铝板的横截面覆盖,并进行搅拌摩擦合金化。参考材料 (RM) 也在相同参数下制造,没有任何石墨烯纳米片增强剂,用于纳米复合材料的性能评估。与参考材料相比,制备的复合材料的显微硬度增加了约 57%。然而,与参考材料相比,所制造的 Al-石墨烯纳米片复合材料的拉伸强度略有下降。复合材料的强化可以通过各种机制系统地解释。显微硬度和拉伸试验的结果得到了各种表征方法的证实,例如光学显微照片、扫描电子显微镜、原子力显微镜和 X 射线衍射。与参考材料相比,制备的复合材料的显微硬度增加了约 57%。然而,与参考材料相比,所制造的 Al-石墨烯纳米片复合材料的拉伸强度略有下降。复合材料的强化可以通过各种机制系统地解释。显微硬度和拉伸试验的结果得到了各种表征方法的证实,例如光学显微照片、扫描电子显微镜、原子力显微镜和 X 射线衍射。与参考材料相比,制备的复合材料的显微硬度增加了约 57%。然而,与参考材料相比,所制造的 Al-石墨烯纳米片复合材料的拉伸强度略有下降。复合材料的强化可以通过各种机制系统地解释。显微硬度和拉伸试验的结果得到了各种表征方法的证实,例如光学显微照片、扫描电子显微镜、原子力显微镜和 X 射线衍射。
更新日期:2019-06-27
down
wechat
bug