当前位置: X-MOL 学术J. Comput. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Record Atomistic Simulation of Crystalline Silicon: Bridging Microscale Structures and Macroscale Properties
Journal of Computational Chemistry ( IF 3 ) Pub Date : 2019-11-19 , DOI: 10.1002/jcc.26113
Chaofeng Hou 1 , Chenglong Zhang 1 , Wei Ge 1 , Lei Wang 2 , Lin Han 2 , Jianmin Pang 3
Affiliation  

Based on the molecular dynamics software package CovalentMD 2.0, the fastest molecular dynamics simulation for covalent crystalline silicon with bond‐order potentials has been implemented on the third highest performance supercomputer “Sunway TaihuLight” in the world (before June 2019), and already obtained 16.0 Pflops (1015 floating point operation per second) in double precision for the simulation of crystalline silicon, which is recordly high for rigorous atomistic simulation of covalent materials. The simulations used up to 160,768 64‐core processors, totally nearly 10.3 million cores, to simulate more than 137 billion silicon atoms, where the parallel efficiency is over 80% on the whole machine. The running performance on a single processor reached 15.1% of its theoretical peak at highest. The longitudinal dimension of the simulated system is far beyond the range with scale‐dependent properties, while the lateral dimension significantly exceeds the experimentally measurable range. Our simulation enables virtual experiments on real‐world nanostructured materials and devices for predicting macroscale properties and behaviors from microscale structures directly, bringing about many exciting new possibilities in nanotechnology, information technology, electronics and renewable energies, etc. © 2019 Wiley Periodicals, Inc.

中文翻译:

记录晶体硅的原子模拟:弥合微观结构和宏观特性

基于分子动力学软件包CovalentMD 2.0,对具有键序势的共价晶硅进行了最快的分子动力学模拟,已在世界第三高性能超级计算机“神威太湖之光”上实现(2019年6月前),并已获得16.0用于晶体硅模拟的双精度 Pflops(每秒 1015 次浮点运算),这在共价材料的严格原子模拟中创下了历史新高。仿真使用了多达160768个64核处理器,共计近1030万核,模拟了超过1370亿个硅原子,整机并行效率超过80%。单处理器运行性能最高达到理论峰值的15.1%。模拟系统的纵向尺寸远远超出了具有尺度相关特性的范围,而横向尺寸显着超出了实验可测量的范围。我们的模拟能够在真实世界的纳米结构材料和设备上进行虚拟实验,以直接从微观结构预测宏观特性和行为,为纳米技术、信息技术、电子和可再生能源等带来许多令人兴奋的新可能性。 © 2019 Wiley Periodicals, Inc.
更新日期:2019-11-19
down
wechat
bug