当前位置: X-MOL 学术Mater. Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Meta-analysis: the molecular organization of non-fullerene acceptors
Materials Horizons ( IF 13.3 ) Pub Date : 2019-11-18 , DOI: 10.1039/c9mh01439j
Pierluigi Mondelli 1, 2, 3, 4, 5 , Gabriele Boschetto 5, 6, 7, 8 , Peter N. Horton 5, 7, 9, 10 , Priti Tiwana 1, 2, 3, 4, 5 , Chris-Kriton Skylaris 5, 6, 7, 8 , Simon J. Coles 5, 7, 9, 10 , Michal Krompiec 1, 2, 3, 4, 5 , Graham Morse 1, 2, 3, 4, 5
Affiliation  

The rapid development of Non-Fullerene Acceptors (NFAs) for organic solar cells has recently pushed the Power Conversion Efficiencies (PCE) over the 15% threshold, surpassing fullerene-based state-of-the-art devices. However, for the commercialization of large-scale photovoltaic modules, thick active layers films (150–300 nm) with high PCE and fill factors are required. The realization of materials with higher charge mobilities is fundamental for the roll-to-roll printing industry, and therefore understanding the factors that limit charge transport properties of NFAs becomes crucial for commercialization. The study of the molecular packing and arrangement of NFAs in the solid-state provides direct insight to the propensity of the pristine materials to crystallize and contribute efficiently to the charge transport. In this work we combine experimental techniques and molecular modelling, with the aim of analyzing the way in which NFAs interact in the solid-state and the key components of their structures for building efficient percolation pathways for charge transport. To this end, several new molecules were synthesized and crystallized by solvent vapour diffusion, which were then characterized by single crystal X-Ray Diffraction (XRD). These structures were further compared to a wide selection of literature materials. Density Functional Theory (DFT) calculations were also carried out to examine the electronic transport of these materials with respect to their molecular packing motifs.

中文翻译:

荟萃分析:非富勒烯受体的分子结构

用于有机太阳能电池的非富勒烯受体(NFA)的快速发展最近将功率转换效率(PCE)推升至超过15%的门槛,超过了基于富勒烯的先进设备。但是,对于大规模光伏组件的商业化,需要具有高PCE和填充因子的厚有源层膜(150-300 nm)。具有高电荷迁移率的材料的实现对于卷对卷印刷行业至关重要,因此,了解限制NFA电荷传输特性的因素对于商业化至关重要。对固体中NFA的分子堆积和排列的研究提供了对原始材料结晶的趋势的直接了解,并有效地促进了电荷传输。在这项工作中,我们结合了实验技术和分子建模,目的是分析NFA在固态中相互作用的方式及其结构的关键组成部分,以建立有效的渗漏途径进行电荷传输。为此,合成了几个新分子,并通过溶剂蒸汽扩散使其结晶,然后通过单晶X射线衍射(XRD)对其进行了表征。将这些结构与大量文献资料进行了比较。还进行了密度泛函理论(DFT)计算,以检查这些材料相对于其分子堆积图案的电子传输。目的是分析NFA在固态中相互作用的方式及其结构的关键组成部分,以建立有效的渗漏途径进行电荷传输。为此,合成了几个新分子,并通过溶剂蒸汽扩散使其结晶,然后通过单晶X射线衍射(XRD)对其进行了表征。将这些结构与大量文献资料进行了比较。还进行了密度泛函理论(DFT)计算,以检查这些材料相对于其分子堆积图案的电子传输。目的是分析NFA在固态中的相互作用方式及其结构的关键组成部分,以建立有效的渗流途径进行电荷传输。为此,合成了几个新分子,并通过溶剂蒸汽扩散使其结晶,然后通过单晶X射线衍射(XRD)对其进行了表征。将这些结构与大量文献资料进行了比较。还进行了密度泛函理论(DFT)计算,以检查这些材料相对于其分子堆积图案的电子传输。将这些结构与大量文献资料进行了比较。还进行了密度泛函理论(DFT)计算,以检查这些材料相对于其分子堆积图案的电子传输。将这些结构与大量文献资料进行了比较。还进行了密度泛函理论(DFT)计算,以检查这些材料相对于其分子堆积图案的电子传输。
更新日期:2019-11-18
down
wechat
bug