当前位置: X-MOL 学术Plant Cell Physiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Alloxan Disintegrates the Plant Cytoskeleton and Suppresses mlo-Mediated Powdery Mildew Resistance
Plant & Cell Physiology ( IF 4.9 ) Pub Date : 2019-11-18 , DOI: 10.1093/pcp/pcz216
Hongpo Wu 1 , Weiwei Zhang 2 , Martin Schuster 3 , Marcin Moch 4 , Reinhard Windoffer 4 , Gero Steinberg 3 , Christopher J Staiger 2, 5 , Ralph Panstruga 1
Affiliation  

Recessively inherited mutant alleles of Mlo genes (mlo) confer broad-spectrum penetration resistance to powdery mildew pathogens in angiosperm plants. Although a few components are known to be required for mlo resistance, the detailed molecular mechanism underlying this type of immunity remains elusive. In this study, we identified alloxan (5,5-dihydroxyl pyrimidine-2,4,6-trione) and some of its structural analogs as chemical suppressors of mlo-mediated resistance in monocotyledonous barley (Hordeum vulgare) and dicotyledonous Arabidopsis thaliana. Apart from mlo resistance, alloxan impairs nonhost resistance in Arabidopsis. Histological analysis revealed that the chemical reduces callose deposition and hydrogen peroxide accumulation at attempted fungal penetration sites. Fluorescence microscopy revealed that alloxan interferes with the motility of cellular organelles (peroxisomes, endosomes and the endoplasmic reticulum) and the pathogen-triggered redistribution of the PEN1/SYP121 t-SNARE protein. These cellular defects are likely the consequence of disassembly of actin filaments and microtubules upon alloxan treatment. Similar to the situation in animal cells, alloxan elicited the temporary accumulation of reactive oxygen species (ROS) in cotyledons and rosette leaves of Arabidopsis plants. Our results suggest that alloxan may destabilize cytoskeletal architecture via induction of an early transient ROS burst, further leading to the failure of molecular and cellular processes that are critical for plant immunity.

中文翻译:

四氧嘧啶分解植物的细胞骨架,并抑制mlo介导的白粉病抗性

Mlo基因(mlo)的隐性遗传突变等位基因赋予被子植物白粉病病原体广谱抗性。尽管已知一些抗mlo所需的成分,但这种免疫力的详细分子机制仍然难以捉摸。在这项研究中,我们鉴定了四氧嘧啶(5,5-二羟基嘧啶-2,4,6-三酮)及其某些结构类似物,作为单子叶大麦(大麦)和双子叶拟南芥中mlo介导的抗性的化学抑制剂。除了mlo抗性之外,四氧嘧啶还削弱了拟南芥的非宿主抗性。组织学分析表明,该化学物质减少了企图的真菌渗透部位的call质沉积和过氧化氢积聚。荧光显微镜显示,四氧嘧啶会干扰细胞器(过氧化物酶体,内体和内质网)的运动以及PEN1 / SYP121 t-SNARE蛋白的病原体触发的重新分布。这些细胞缺陷可能是四氧嘧啶处理后肌动蛋白丝和微管分解的结果。与动物细胞中的情况类似,四氧嘧啶在拟南芥植物的子叶和莲座叶中引起活性氧(ROS)的暂时积累。我们的结果表明,四氧嘧啶可能通过诱导早期瞬时ROS爆发而破坏细胞骨架结构的稳定性,进一步导致对植物免疫至关重要的分子和细胞过程的失败。内体和内质网)和PEN1 / SYP121 t-SNARE蛋白的病原体触发的重新分布。这些细胞缺陷可能是四氧嘧啶处理后肌动蛋白丝和微管分解的结果。与动物细胞中的情况类似,四氧嘧啶在拟南芥植物的子叶和莲座叶中引起活性氧(ROS)的暂时积累。我们的结果表明,四氧嘧啶可能通过诱导早期瞬时ROS爆发而破坏细胞骨架结构的稳定性,进一步导致对植物免疫至关重要的分子和细胞过程的失败。内体和内质网)和PEN1 / SYP121 t-SNARE蛋白的病原体触发的重新分布。这些细胞缺陷可能是四氧嘧啶处理后肌动蛋白丝和微管分解的结果。与动物细胞中的情况类似,四氧嘧啶在拟南芥植物的子叶和莲座叶中引起活性氧(ROS)的暂时积累。我们的结果表明,四氧嘧啶可能通过诱导早期瞬时ROS爆发而破坏细胞骨架结构的稳定性,进一步导致对植物免疫至关重要的分子和细胞过程的失败。与动物细胞中的情况类似,四氧嘧啶在拟南芥植物的子叶和莲座叶中引起活性氧(ROS)的暂时积累。我们的结果表明,四氧嘧啶可能通过诱导早期瞬时ROS爆发而破坏细胞骨架结构的稳定性,进一步导致对植物免疫至关重要的分子和细胞过程的失败。与动物细胞中的情况类似,四氧嘧啶在拟南芥植物的子叶和莲座叶中引起活性氧(ROS)的暂时积累。我们的结果表明,四氧嘧啶可能通过诱导早期瞬时ROS爆发而破坏细胞骨架结构的稳定性,进一步导致对植物免疫至关重要的分子和细胞过程的失败。
更新日期:2020-03-19
down
wechat
bug