当前位置: X-MOL 学术npj Quantum Inform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optical spin locking of a solid-state qubit
npj Quantum Information ( IF 7.6 ) Pub Date : 2019-11-12 , DOI: 10.1038/s41534-019-0206-3
J. H. Bodey , R. Stockill , E. V. Denning , D. A. Gangloff , G. Éthier-Majcher , D. M. Jackson , E. Clarke , M. Hugues , C. Le Gall , M. Atatüre

Quantum control of solid-state spin qubits typically involves pulses in the microwave domain, drawing from the well-developed toolbox of magnetic resonance spectroscopy. Driving a solid-state spin by optical means offers a high-speed alternative, which in the presence of limited spin coherence makes it the preferred approach for high-fidelity quantum control. Bringing the full versatility of magnetic spin resonance to the optical domain requires full phase and amplitude control of the optical fields. Here, we imprint a programmable microwave sequence onto a laser field and perform electron spin resonance in a semiconductor quantum dot via a two-photon Raman process. We show that this approach yields full SU(2) spin control with over \(98 \%\)\(\pi\)-rotation fidelity. We then demonstrate its versatility by implementing a particular multi-axis control sequence, known as spin locking. Combined with electron-nuclear Hartmann–Hahn resonances which we also report in this work, this sequence will enable efficient coherent transfer of a quantum state from the electron spin to the mesoscopic nuclear ensemble.



中文翻译:

固态量子位的光学自旋锁定

固态自旋量子位的量子控制通常涉及微波域中的脉冲,这些脉冲来自发达的磁共振波谱工具箱。通过光学手段驱动固态自旋提供了一种高速替代方案,在存在有限的自旋相干性的情况下,这使其成为高保真量子控制的首选方法。要将自旋共振的全部功能带到光学领域,需要对光场进行完整的相位和幅度控制。在这里,我们将可编程的微波序列压印到激光场上,并通过双光子拉曼过程在半导体量子点中执行电子自旋共振。我们证明了这种方法产生了超过(\ 98 \%\)\(\ pi \)的完整SU(2)自旋控制旋转保真度。然后,我们通过实现特定的多轴控制序列(称为自旋锁定)来证明其多功能性。结合我们也在这项工作中报告的电子核Hartmann-Hahn共振,该序列将使量子态从电子自旋到介观核系的有效相干转移。

更新日期:2019-11-13
down
wechat
bug