当前位置: X-MOL 学术Nat. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular engineering of organic-inorganic hybrid perovskites quantum wells.
Nature Chemistry ( IF 21.8 ) Pub Date : 2019-11-11 , DOI: 10.1038/s41557-019-0354-2
Yao Gao 1 , Enzheng Shi 1 , Shibin Deng 2 , Stephen B Shiring 1 , Jordan M Snaider 2 , Chao Liang 3 , Biao Yuan 3 , Ruyi Song 4 , Svenja M Janke 5 , Alexander Liebman-Peláez 6, 7 , Pilsun Yoo 8 , Matthias Zeller 2 , Bryan W Boudouris 1, 2 , Peilin Liao 8 , Chenhui Zhu 6 , Volker Blum 4, 5 , Yi Yu 3 , Brett M Savoie 1 , Libai Huang 2 , Letian Dou 1
Affiliation  

Semiconductor quantum-well structures and superlattices are key building blocks in modern optoelectronics, but it is difficult to simultaneously realize defect-free epitaxial growth while fine tuning the chemical composition, layer thickness and band structure of each layer to achieve the desired performance. Here we demonstrate the modulation of the electronic structure-and consequently the optical properties-of organic semiconducting building blocks that are incorporated between the layers of perovskites through a facile solution processing step. Self-aggregation of the conjugated organic molecules is suppressed by functionalization with sterically demanding groups and single crystalline organic-perovskite hybrid quantum wells (down to one-unit-cell thick) are obtained. The energy and charge transfers between adjacent organic and inorganic layers are shown to be fast and efficient, owing to the atomically flat interface and ultrasmall interlayer distance of the perovskite materials. The resulting two-dimensional hybrid perovskites are very stable due to protection given by the bulky hydrophobic organic groups.

中文翻译:

有机-无机杂化钙钛矿量子阱的分子工程。

半导体量子阱结构和超晶格是现代光电子学中的关键组成部分,但是很难同时实现无缺陷的外延生长,同时微调每一层的化学组成,层厚度和能带结构以实现所需的性能。在这里,我们展示了有机半导体结构单元的电子结构的调制,因此也证明了其光学特性,该结构通过简便的溶液处理步骤掺入钙钛矿层之间。共轭有机分子的自聚集通过具有空间要求的基团的官能化作用而得到抑制,并且获得了单晶有机钙钛矿杂化量子阱(低至一个单元的厚度)。由于钙钛矿材料的原子平面界面和极小的层间距离,相邻有机层和无机层之间的能量和电荷转移被证明是快速而有效的。由于庞大的疏水性有机基团提供的保护,所得的二维杂化钙钛矿非常稳定。
更新日期:2019-11-13
down
wechat
bug