当前位置: X-MOL 学术Microb. Cell Fact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
5-Aminolevulinic acid fermentation using engineered Saccharomyces cerevisiae.
Microbial Cell Factories ( IF 6.4 ) Pub Date : 2019-11-07 , DOI: 10.1186/s12934-019-1242-6
Kiyotaka Y Hara 1, 2 , Masaru Saito 3 , Hiroko Kato 4 , Kana Morikawa 2 , Hiroshi Kikukawa 1 , Hironari Nomura 2, 5 , Takanori Fujimoto 3 , Yoko Hirono-Hara 1 , Shigeyuki Watanabe 3 , Kengo Kanamaru 5 , Akihiko Kondo 4, 6, 7
Affiliation  

BACKGROUND 5'-Aminolevulinic acid (ALA) is widely used in the pharmaceutical industry, healthcare, and food production, and is a substrate for the biosynthesis of heme, which is required for respiration and photosynthesis. Enhancement of ALA biosynthesis has never been developed in Saccharomyces cerevisiae, which is a well-known model microorganism used for bioproduction of many value-added compounds. RESULTS We demonstrated that metabolic engineering significantly improved ALA production in S. cerevisiae. First, we found that overexpression of HEM1, which encodes ALA synthetase, increased ALA production. Furthermore, addition of an optimal amount of glycine, a substrate for ALA biosynthesis, or levulinic acid, an inhibitor of ALA dehydrogenase, effectively increased ALA production. Next, we developed an assay for multiple metabolites including ALA and found that aconitase, encoded by ACO1 and ACO2, is the rate-limiting enzyme of ALA biosynthesis when sufficient glycine is supplied. Overexpression of ACO2 further enhanced ALA production in S. cerevisiae overexpressing HEM1. CONCLUSIONS In this study, ALA production in S. cerevisiae was enhanced by metabolic engineering. This study also shows a strategy to identify the rate-limiting step of a target synthetic pathway by assay for multiple metabolites alongside the target product. This strategy can be applied to improve production of other valuable products in the well-studied and well-industrialized microorganism S. cerevisiae.

中文翻译:

使用工程酿酒酵母发酵5-氨基乙酰丙酸。

背景技术5'-氨基乙酰丙酸(ALA)被广泛用于制药工业,医疗保健和食品生产中,并且是呼吸和光合作用所需的血红素生物合成的底物。酿酒酵母(Saccharomyces cerevisiae)中尚未开发出增强ALA生物合成的能力,酿酒酵母是用于生物生产许多增值化合物的众所周知的模型微生物。结果我们证明了代谢工程显着改善了酿酒酵母中的ALA产生。首先,我们发现编码ALA合成酶的HEM1的过表达增加了ALA的产生。此外,添加最适量的甘氨酸(ALA生物合成的底物)或乙酰丙酸(ALA脱氢酶的抑制剂)可有效提高ALA的产量。下一个,我们开发了一种分析多种代谢物(包括ALA)的方法,发现当提供足够的甘氨酸时,由ACO1和ACO2编码的乌头酸酶是ALA生物合成的限速酶。在过量表达HEM1的酿酒酵母中,ACO2的过表达进一步增强了ALA的产生。结论在这项研究中,通过代谢工程提高了酿酒酵母中ALA的产生。这项研究还显示了一种通过测定目标产物旁边多种代谢物来鉴定目标合成途径的限速步骤的策略。该策略可用于改善经过研究和工业化程度较高的酿酒酵母中其他有价值产品的生产。在过量表达HEM1的酿酒酵母中,ACO2的过表达进一步增强了ALA的产生。结论在这项研究中,通过代谢工程提高了酿酒酵母中ALA的产生。这项研究还显示了一种通过测定目标产物旁边多种代谢物来鉴定目标合成途径的限速步骤的策略。该策略可用于改善经过研究和工业化程度较高的酿酒酵母中其他有价值产品的生产。在过量表达HEM1的酿酒酵母中,ACO2的过表达进一步增强了ALA的产生。结论在这项研究中,通过代谢工程提高了酿酒酵母中ALA的产生。这项研究还显示了一种通过测定目标产物旁边多种代谢物来鉴定目标合成途径的限速步骤的策略。该策略可用于改善经过研究和工业化程度较高的酿酒酵母中其他有价值产品的生产。
更新日期:2019-11-07
down
wechat
bug