当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities
Science ( IF 56.9 ) Pub Date : 2019-11-07 , DOI: 10.1126/science.aay4182
Katarzyna Rechcińska 1 , Mateusz Król 1 , Rafał Mazur 2 , Przemysław Morawiak 2 , Rafał Mirek 1 , Karolina Łempicka 1 , Witold Bardyszewski 3 , Michał Matuszewski 4 , Przemysław Kula 5 , Wiktor Piecek 2 , Pavlos G. Lagoudakis 6, 7 , Barbara Piętka 1 , Jacek Szczytko 1
Affiliation  

Inducing optical spin-orbit coupling The coupling of the spin-orbit interactions in solid-state systems can give rise to a wide range of exotic electronic transport effects. But solid-state systems tend to be somewhat limited in their flexibility because the spin-orbit coupling is fixed. By contrast, optical systems have recently been shown to mimic complex solid-state systems, with flexibility in design providing the ability to control and manipulate the system properties. Using a liquid crystal–filled photonic cavity, Rechcińska et al. emulated an artificial Rashba-Dresselhaus spin-orbit coupling in a photonic system and showed control of an artificial Zeeman splitting. The results illustrate a powerful approach of engineering synthetic Hamiltonians with photons for the simulation of nontrivial condensed matter and quantum phenomena. Science, this issue p. 727 Complex Hamiltonians are engineered optically using liquid crystals embedded in a cavity. Spin-orbit interactions lead to distinctive functionalities in photonic systems. They exploit the analogy between the quantum mechanical description of a complex electronic spin-orbit system and synthetic Hamiltonians derived for the propagation of electromagnetic waves in dedicated spatial structures. We realize an artificial Rashba-Dresselhaus spin-orbit interaction in a liquid crystal–filled optical cavity. Three-dimensional tomography in energy-momentum space enabled us to directly evidence the spin-split photon mode in the presence of an artificial spin-orbit coupling. The effect is observed when two orthogonal linear polarized modes of opposite parity are brought near resonance. Engineering of spin-orbit synthetic Hamiltonians in optical cavities opens the door to photonic emulators of quantum Hamiltonians with internal degrees of freedom.

中文翻译:

液晶光腔中的工程自旋轨道合成哈密顿量

诱导光学自旋轨道耦合 固态系统中自旋轨道相互作用的耦合可以产生范围广泛的奇异电子传输效应。但是由于自旋轨道耦合是固定的,固态系统的灵活性往往会受到一定的限制。相比之下,光学系统最近已被证明可以模仿复杂的固态系统,设计的灵活性提供了控制和操纵系统属性的能力。Rechcińska 等人使用充满液晶的光子腔。在光子系统中模拟了人工 Rashba-Dresselhaus 自旋轨道耦合,并展示了人工塞曼分裂的控制。结果说明了一种使用光子设计合成哈密顿量的强大方法,用于模拟非平凡凝聚态物质和量子现象。科学,这个问题 727 个复哈密顿量是使用嵌入腔体的液晶进行光学设计的。自旋轨道相互作用导致光子系统具有独特的功能。他们利用复杂电子自旋轨道系统的量子力学描述与用于电磁波在专用空间结构中传播的合成哈密顿量之间的类比。我们在充满液晶的光学腔中实现了人工 Rashba-Dresselhaus 自旋轨道相互作用。能量-动量空间中的三维断层扫描使我们能够直接证明存在人工自旋轨道耦合时的自旋分裂光子模式。当相反奇偶校验的两个正交线性极化模式接近共振时观察到该效应。
更新日期:2019-11-07
down
wechat
bug