当前位置: X-MOL 学术Genome Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability
Genome Medicine ( IF 12.3 ) Pub Date : 2019-11-07 , DOI: 10.1186/s13073-019-0675-1
Anna Lindstrand , Jesper Eisfeldt , Maria Pettersson , Claudia M. B. Carvalho , Malin Kvarnung , Giedre Grigelioniene , Britt-Marie Anderlid , Olof Bjerin , Peter Gustavsson , Anna Hammarsjö , Patrik Georgii-Hemming , Erik Iwarsson , Maria Johansson-Soller , Kristina Lagerstedt-Robinson , Agne Lieden , Måns Magnusson , Marcel Martin , Helena Malmgren , Magnus Nordenskjöld , Ameli Norling , Ellika Sahlin , Henrik Stranneheim , Emma Tham , Josephine Wincent , Sofia Ygberg , Anna Wedell , Valtteri Wirta , Ann Nordgren , Johanna Lundin , Daniel Nilsson

Since different types of genetic variants, from single nucleotide variants (SNVs) to large chromosomal rearrangements, underlie intellectual disability, we evaluated the use of whole-genome sequencing (WGS) rather than chromosomal microarray analysis (CMA) as a first-line genetic diagnostic test. We analyzed three cohorts with short-read WGS: (i) a retrospective cohort with validated copy number variants (CNVs) (cohort 1, n = 68), (ii) individuals referred for monogenic multi-gene panels (cohort 2, n = 156), and (iii) 100 prospective, consecutive cases referred to our center for CMA (cohort 3). Bioinformatic tools developed include FindSV, SVDB, Rhocall, Rhoviz, and vcf2cytosure. First, we validated our structural variant (SV)-calling pipeline on cohort 1, consisting of three trisomies and 79 deletions and duplications with a median size of 850 kb (min 500 bp, max 155 Mb). All variants were detected. Second, we utilized the same pipeline in cohort 2 and analyzed with monogenic WGS panels, increasing the diagnostic yield to 8%. Next, cohort 3 was analyzed by both CMA and WGS. The WGS data was processed for large (> 10 kb) SVs genome-wide and for exonic SVs and SNVs in a panel of 887 genes linked to intellectual disability as well as genes matched to patient-specific Human Phenotype Ontology (HPO) phenotypes. This yielded a total of 25 pathogenic variants (SNVs or SVs), of which 12 were detected by CMA as well. We also applied short tandem repeat (STR) expansion detection and discovered one pathologic expansion in ATXN7. Finally, a case of Prader-Willi syndrome with uniparental disomy (UPD) was validated in the WGS data. Important positional information was obtained in all cohorts. Remarkably, 7% of the analyzed cases harbored complex structural variants, as exemplified by a ring chromosome and two duplications found to be an insertional translocation and part of a cryptic unbalanced translocation, respectively. The overall diagnostic rate of 27% was more than doubled compared to clinical microarray (12%). Using WGS, we detected a wide range of SVs with high accuracy. Since the WGS data also allowed for analysis of SNVs, UPD, and STRs, it represents a powerful comprehensive genetic test in a clinical diagnostic laboratory setting.

中文翻译:

从细胞遗传学到细胞基因组学:全基因组测序作为一线测试,全面捕获了导致智力障碍的多种致病基因变异

由于不同类型的遗传变异(从单核苷酸变异(SNV)到大型染色体重排)是智力残疾的基础,因此我们评估了使用全基因组测序(WGS)而不是染色体微阵列分析(CMA)作为一线遗传诊断测试。我们使用短读WGS分析了三个队列:(i)具有经验证的拷贝数变异(CNV)的回顾性队列(队列1,n = 68),(ii)涉及单基因多基因组的个体(队列2,n = 156),以及(iii)100例连续的预期病例被转介给我们的CMA中心(组3)。开发的生物信息学工具包括FindSV,SVDB,Rhocall,Rhoviz和vcf2cytosure。首先,我们验证了同类群组1中的结构变体(SV)调用管道 由三个三体组和79个删除和重复组成,中位大小为850 kb(最小500 bp,最大155 Mb)。检测到所有变体。其次,我们在同类研究2中使用了相同的流水线,并使用单基因WGS面板进行了分析,将诊断率提高到8%。接下来,队列3由CMA和WGS进行了分析。处理了WGS数据,处理了全基因组(> 10 kb)大型SV以及与智力障碍相关的887个基因以及与患者特定的人类表型本体(HPO)表型匹配的基因中的外显子SV和SNV。这产生了总共25个病原体变体(SNV或SV),其中12个也被CMA检测到。我们还应用了短串联重复序列(STR)扩展检测,并发现了ATXN7中的一种病理性扩展。最后,在WGS数据中验证了1例具有单亲二体性(UPD)的Prader-Willi综合征。在所有队列中都获得了重要的位置信息。值得注意的是,分析的病例中有7%包含复杂的结构变异,例如环染色体和两个重复,分别是插入易位和隐性不平衡易位的一部分。与临床微阵列(12%)相比,总诊断率27%翻了一番还多。使用WGS,我们可以高精度地检测到各种各样的SV。由于WGS数据还可以分析SNV,UPD和STR,因此它代表了临床诊断实验室环境中强大的综合基因测试。分析的病例中有7%包含复杂的结构变异,例如环染色体和两个重复,分别是插入易位和隐性不平衡易位的一部分。与临床微阵列(12%)相比,总诊断率27%翻了一番还多。使用WGS,我们可以高精度地检测到各种SV。由于WGS数据还可以分析SNV,UPD和STR,因此它代表了临床诊断实验室环境中强大的综合基因测试。分析的病例中有7%包含复杂的结构变异,例如环染色体和两个重复,分别是插入易位和隐性不平衡易位的一部分。与临床微阵列(12%)相比,总诊断率27%翻了一番还多。使用WGS,我们可以高精度地检测到各种各样的SV。由于WGS数据还可以分析SNV,UPD和STR,因此它代表了临床诊断实验室环境中强大的综合基因测试。我们以高精度检测了各种各样的SV。由于WGS数据还可以分析SNV,UPD和STR,因此它代表了临床诊断实验室环境中强大的综合基因测试。我们以高精度检测了各种各样的SV。由于WGS数据还可以分析SNV,UPD和STR,因此它代表了临床诊断实验室环境中强大的综合基因测试。
更新日期:2019-11-07
down
wechat
bug