当前位置: X-MOL 学术Struct. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nitrogen substitution effect on hydrogen adsorption properties of Ti-decorated benzene
Structural Chemistry ( IF 1.7 ) Pub Date : 2019-04-25 , DOI: 10.1007/s11224-019-01340-x
Priyanka Tavhare , Ajay Chaudhari

Ab initio calculations are performed to study hydrogen storage properties of Ti-doped benzene and Ti-doped nitrogen-substituted benzene complexes. Two of the carbon atoms in benzene are replaced by two nitrogen atoms. Two nitrogen atoms are substituted either at 1-2, 1-3, or 1-4 positions of a benzene ring and named as BN1-2Ti, BN1-3Ti, and BN1-4Ti, respectively. Maximum four, four, three, and four H2 molecules get adsorbed on C6H6Ti, BN1-2Ti, BN1-3Ti, and BN1-4Ti complexes respectively with respective H2 uptake capacity of 6.02, 5.84, 4.45, and 5.84 wt%. The positive Gibbs free energy corrected H2 adsorption energy values obtained for all these complexes at ambient conditions indicate that the formation of these complexes at room temperature is thermodynamically favorable. Temperature- and pressure-dependent adsorption energy calculations show that the H2 adsorption on all these complexes is feasible over a wide range of temperature and pressure. The gap between the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbital (LUMO) is found to be greater than 5 eV for all the complexes indicating stability of these complexes. The H2 molecules interact more strongly with Ti-doped nitrogen-substituted benzene than the Ti-doped benzene that results in higher H2 desorption temperature obtained using van 't Hoff equation for the former than the latter. The density of states plots have been used to understand the H2 adsorption mechanism.

中文翻译:

氮置换对钛装饰苯吸氢性能的影响

进行从头算计算以研究掺钛苯和掺钛氮取代苯配合物的储氢特性。苯中的两个碳原子被两个氮原子取代。两个氮原子在苯环的 1-2、1-3 或 1-4 位被取代,分别命名为 BN1-2Ti、BN1-3Ti 和 BN1-4Ti。最多四个、四个、三个和四个 H2 分子分别吸附在 C6H6Ti、BN1-2Ti、BN1-3Ti 和 BN1-4Ti 复合物上,其 H2 吸收能力分别为 6.02、5.84、4.45 和 5.84 wt%。在环境条件下为所有这些复合物获得的正吉布斯自由能校正 H2 吸附能值表明这些复合物在室温下的形成在热力学上是有利的。温度和压力相关的吸附能计算表明,所有这些复合物上的 H2 吸附在很宽的温度和压力范围内都是可行的。发现所有复合物的最高占据分子轨道 (HOMO) 和最低未占据分子轨道 (LUMO) 之间的差距大于 5 eV,表明这些复合物的稳定性。H2 分子与 Ti 掺杂的氮取代苯的相互作用比 Ti 掺杂的苯更强,这导致使用 van't Hoff 方程获得的 H2 解吸温度高于后者。态密度图已被用于理解 H2 吸附机制。发现所有复合物的最高占据分子轨道 (HOMO) 和最低未占据分子轨道 (LUMO) 之间的差距大于 5 eV,表明这些复合物的稳定性。H2 分子与 Ti 掺杂的氮取代苯的相互作用比 Ti 掺杂的苯更强,这导致使用 van't Hoff 方程获得的 H2 解吸温度高于后者。态密度图已被用于理解 H2 吸附机制。发现所有复合物的最高占据分子轨道 (HOMO) 和最低未占据分子轨道 (LUMO) 之间的差距大于 5 eV,表明这些复合物的稳定性。H2 分子与 Ti 掺杂的氮取代苯的相互作用比 Ti 掺杂的苯更强,这导致使用 van't Hoff 方程获得的 H2 解吸温度高于后者。态密度图已被用于理解 H2 吸附机制。t Hoff 方程为前者大于后者。态密度图已被用于理解 H2 吸附机制。t Hoff 方程为前者大于后者。态密度图已被用于理解 H2 吸附机制。
更新日期:2019-04-25
down
wechat
bug