当前位置: X-MOL 学术J. Mass Spectrom. › 论文详情
Further studies on the signal enhancement effect in laser diode thermal desorption-triple quadrupole mass spectrometry using microwell surface coatings.
Journal of Mass Spectrometry ( IF 1.671 ) Pub Date : 2019-12-11 , DOI: 10.1002/jms.4455
Alexia Gravel,Cassandra Guérette,Daniel Fortin,Serge Auger,Pierre Picard,Pedro A Segura

The laser diode thermal desorption (LDTD) ionization source allows ultrafast and sensitive analysis of small molecules by mass spectrometry. Signal enhancement in LDTD has been observed when coating the surface of sample microwells with a solution of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid. Here we present a quantitative analysis of signal enhancement using solutions of diverse commercial proteins (lysozyme, immunoglobulin G, albumin, and fibrinogen) as coatings. Results showed that compounds with polar chemical functions such as carboxylic acid, sulfonyl, and nitro had signal enhancement factors, in most cases higher than 10, when using any of the tested proteins as coating agent. Analysis of variance revealed that immunoglobulin G and fibrinogen gave the best results. However, the signal enhancement factors obtained with these proteins were not superior to those observed with EDTA. To explain the signal enhancement effect of proteins, analysis by scanning electron microscopy of dried samples on the microwell sample plates was carried out. Images showed that salicylic acid, one of the compounds with the highest observed signal enhancement, formed a thick layer when applied directly on the uncoated surface, but it formed small crystals (<1 μm) in the presence of protein or EDTA coatings. Further crystallographic studies using powder X-ray diffraction showed that the crystalline form of salicylic acid is modified in the presence of EDTA. Salicylic acid when mixed with EDTA had a higher percentage of amorphous phase (38.1%) than without EDTA (23.1%). These results appear to confirm that the diminution of crystal size of analytes and the increase of amorphous phase are implicated in signal enhancement effect observed in LDTD using microwell surface coatings. To design better coatings and completely elucidate the signal enhancement effect in LDTD, more studies are necessary to understand the effects of coatings on the ionization of analytes.
更新日期:2020-01-08

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
科研绘图
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug