当前位置: X-MOL 学术Environ. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evidence for the coexistence of direct and riboflavin-mediated interspecies electron transfer in Geobacter co-culture.
Environmental Microbiology ( IF 5.1 ) Pub Date : 2019-11-10 , DOI: 10.1111/1462-2920.14842
Lingyan Huang 1 , Xing Liu 1 , Yin Ye 1 , Man Chen 1 , Shungui Zhou 1
Affiliation  

Geobacter species can secrete free redox-active flavins, but the role of these flavins in the interspecies electron transfer (IET) of Geobacter direct interspecies electron transfer (DIET) co-culture is unknown. Here, we report the presence of a new riboflavin-mediated interspecies electron transfer (RMIET) process in a traditional Geobacter DIET co-culture; in this process, riboflavin contributes to IET by acting as a free-form electron shuttle between free Geobacter species and serving as a bound cofactor of some cytochromes in Geobacter co-culture aggregates. Multiple lines of evidence indicate that RMIET facilitates the primary initiation of syntrophic growth between Geobacter species before establishing the DIET co-culture and provides additional ways alongside the DIET to transfer electrons to achieve electric syntrophy between Geobacter species. Redox kinetic analysis of riboflavin on either Geobacter species demonstrated that the Gmet_2896 cytochrome acts as the key riboflavin reduction site, while riboflavin oxidation by Geobacter sulfurreducens is the rate-limiting step in RMIET, and the RMIET makes only a minor contribution to IET in Geobacter DIET co-culture. The discovery of a new RMIET process in Geobacter DIET co-culture suggests the complexity of IET in syntrophic bacterial communities and provides suggestions for the careful examination of the IET of other syntrophic co-cultures.

中文翻译:

在地细菌共培养中直接和核黄素介导的种间电子转移并存的证据。

土杆菌种可以分泌游离的氧化还原活性黄素,但是这些黄素在土杆菌直接种间电子转移(DIET)共培养的种间电子转移(IET)中的作用尚不清楚。在这里,我们报告了在传统的Geobacter DIET共培养中新的核黄素介导的种间电子转移(RMIET)过程的存在。在此过程中,核黄素通过充当自由的Geobacter物种之间的自由形式的电子穿梭,并作为Geobacter共培养聚集物中某些细胞色素的结合辅因子而对IET有所贡献。多条证据表明,RMIET在建立DIET共培养之前促进了地细菌物种之间的营养生长的初步启动,并提供了与DIET一起传递电子以实现地细菌物种之间电同养的其他方式。核黄素对两种土壤细菌物种的氧化还原动力学分析表明,Gmet_2896细胞色素是核黄素还原的关键位点,而核糖蛋白硫还原酶对核黄素的氧化是RMIET的限速步骤,而RMIET仅对Geobacter DIET中的IET贡献很小共同培养。在地细菌DIET共培养中发现了一种新的RMIET工艺,这提示了在同养细菌群落中IET的复杂性,并为仔细检查其他同养共培养的IET提供了建议。核黄素对两种土壤细菌物种的氧化还原动力学分析表明,Gmet_2896细胞色素是核黄素还原的关键位点,而核细菌硫还原素对核黄素的氧化是RMIET的限速步骤,而RMIET仅对Geobacter DIET中的IET贡献很小共同培养。在地细菌DIET共培养中发现了一种新的RMIET工艺,这提示了在同养细菌群落中IET的复杂性,并为仔细检查其他同养共培养的IET提供了建议。核黄素对两种土壤细菌物种的氧化还原动力学分析表明,Gmet_2896细胞色素是核黄素还原的关键位点,而核糖蛋白硫还原酶对核黄素的氧化是RMIET的限速步骤,而RMIET仅对Geobacter DIET中的IET贡献很小共同培养。在地细菌DIET共培养中发现了一种新的RMIET工艺,这提示了在同养细菌群落中IET的复杂性,并为仔细检查其他同养共培养的IET提供了建议。RMIET在Geobacter DIET共培养中对IET的贡献很小。在地细菌DIET共培养中发现了一种新的RMIET工艺,这提示了在同养细菌群落中IET的复杂性,并为仔细检查其他同养共培养的IET提供了建议。RMIET在Geobacter DIET共培养中对IET的贡献很小。在地细菌DIET共培养中发现了一种新的RMIET工艺,这提示了在同养细菌群落中IET的复杂性,并为仔细检查其他同养共培养的IET提供了建议。
更新日期:2020-01-02
down
wechat
bug