当前位置: X-MOL 学术Environ. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
GATA-type transcriptional factor Gat1 regulates nitrogen uptake and polymalic acid biosynthesis in polyextremotolerant fungus Aureobasidium pullulans.
Environmental Microbiology ( IF 5.1 ) Pub Date : 2019-11-10 , DOI: 10.1111/1462-2920.14841
Xiaodan Song 1 , Yongkang Wang 1 , Pan Wang 1 , Guihong Pu 1 , Xiang Zou 1
Affiliation  

Polymalic acid (PMA) is a novel biopolymer produced by the polyextremotolerant fungus Aureobasidium pullulans. In this study, a GATA-family transcriptional factor, Gat1, which regulates nitrogen uptake and PMA biosynthesis, was investigated. PMA production increased to 11.2% in the mutant overexpressing gat1 but decreased to 49.1% of the PMA titre when gat1 was knocked out from the genome of A. pullulans. Comparative transcriptome analysis of wild-type and mutant strains (∆gat1 and OE::gat1) revealed that 23 common differentially expressed genes were related to oxidative phosphorylation, ribosome biogenesis, and nitrogen metabolism. Under nitrogen-limited stress, regardless of the preferred nitrogen (glutamine, Gln) or non-preferred nitrogen (proline, Pro), 70% of Gat1 in the cells was located in the nucleus-cytoplasm, which resulted in an increase in nitrogen uptake and PMA biosynthesis regulation. Quantitative RT-PCR revealed that glucosekinase (GLK) in the glycolytic pathway and malate synthase (MLS) in the glyoxylate shunt pathway may be cross-regulated by Gat1 and nitrogen concentration (Gln or Pro), Therefore, glk was overexpressed in mutant strain (OE::gat1), which resulted in an increased PMA titre and yield of 12.6% and 13.0% respectively. These findings indicate that Gat1 may play an important role in the dual regulation of the nitrogen and carbon metabolisms in PMA biosynthesis.

中文翻译:

GATA型转录因子Gat1调节耐多聚真菌金黄色葡萄球菌(Aureobasidium pullulans)中的氮吸收和聚苹果酸的生物合成。

聚苹果酸(PMA)是一种由耐多极端性真菌Aureobasidium pullulans生产的新型生物聚合物。在这项研究中,研究了调节氮吸收和PMA生物合成的GATA家族转录因子Gat1。在过表达突变体的gat1中,PMA的产量增加到11.2%,但是当从a。pullulans的基因组中剔除gat1时,PMA的滴度下降到PMA效价的49.1%。对野生型和突变株(Δgat1和OE :: gat1)进行的转录组比较分析显示,共有23个共同差异表达的基因与氧化磷酸化,核糖体生物发生和氮代谢有关。在氮限制的胁迫下,无论优选的氮(谷氨酰胺,Gln)还是非优选的氮(脯氨酸,Pro),细胞中70%的Gat1都位于细胞核内,这导致氮吸收和PMA生物合成调节的增加。定量RT-PCR显示,糖酵解途径中的葡萄糖激酶(GLK)和乙醛酸分流途径中的苹果酸合酶(MLS)可能受Gat1和氮浓度(Gln或Pro)的交叉调控,因此,glk在突变菌株中过表达( OE :: gat1),导致PMA滴度增加,收率分别提高12.6%和13.0%。这些发现表明,Gat1可能在PMA生物合成中氮和碳代谢的双重调控中发挥重要作用。glk在突变株(OE :: gat1)中过表达,导致PMA滴度增加,产率分别为12.6%和13.0%。这些发现表明,Gat1可能在PMA生物合成中氮和碳代谢的双重调控中发挥重要作用。glk在突变株(OE :: gat1)中过表达,导致PMA滴度增加,产率分别为12.6%和13.0%。这些发现表明,Gat1可能在PMA生物合成中氮和碳代谢的双重调控中发挥重要作用。
更新日期:2020-01-02
down
wechat
bug