当前位置: X-MOL 学术Stem Cells › 论文详情
Tunable hydrogels for mesenchymal stem cell delivery: Integrin‐induced transcriptome alterations and hydrogel optimization for human wound healing
STEM CELLS ( IF 5.614 ) Pub Date : 2019-11-23 , DOI: 10.1002/stem.3105
Alina I. Marusina, Alexander A. Merleev, Jesus I. Luna, Laura Olney, Nathan E. Haigh, Daniel Yoon, Chen Guo, Elisa M. Ovadia, Michiko Shimoda, Guillaume Luxardi, Sucharita Boddu, Nelvish N. Lal, Yoshikazu Takada, Kit S. Lam, Ruiwu Liu, R. Rivkah Isseroff, Stephanie Le, Jan A. Nolta, April M. Kloxin, Emanual Maverakis

Therapeutic applications for mesenchymal stem/stromal cells (MSCs) are growing; however, the successful implementation of these therapies requires the development of appropriate MSC delivery systems. Hydrogels are ideally suited to cultivate MSCs but tuning hydrogel properties to match their specific in vivo applications remains a challenge. Thus, further characterization of how hydrogel‐based delivery vehicles broadly influence MSC function and fate will help lead to the next generation of more intelligently designed delivery vehicles. To date, few attempts have been made to comprehensively characterize hydrogel impact on the MSC transcriptome. Herein, we have synthesized cell‐degradable hydrogels based on bio‐inert poly(ethylene glycol) tethered with specific integrin‐binding small molecules and have characterized their resulting effect on the MSC transcriptome when compared with 2D cultured and untethered 3D hydrogel cultured MSCs. The 3D culture systems resulted in alterations in the MSC transcriptome, as is evident by the differential expression of genes related to extracellular matrix production, glycosylation, metabolism, signal transduction, gene epigenetic regulation, and development. For example, genes important for osteogenic differentiation were upregulated in 3D hydrogel cultures, and the expression of these genes could be partially suppressed by tethering an integrin‐binding RGD peptide within the hydrogel. Highlighting the utility of tunable hydrogels, when applied to ex vivo human wounds the RGD‐tethered hydrogel was able to support wound re‐epithelialization, possibly due to its ability to increase PDGF expression and decrease IL‐6 expression. These results will aid in future hydrogel design for a broad range of applications. Stem Cells 2019
更新日期:2019-11-26

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug