当前位置: X-MOL 学术STEM CELLS › 论文详情
Tunable hydrogels for mesenchymal stem cell delivery: Integrin-induced transcriptome alterations and hydrogel optimization for human wound healing.
STEM CELLS ( IF 6.022 ) Pub Date : 2019-10-24 , DOI: 10.1002/stem.3105
Alina I Marusina,Alexander A Merleev,Jesus I Luna,Laura Olney,Nathan E Haigh,Daniel Yoon,Chen Guo,Elisa M Ovadia,Michiko Shimoda,Guillaume Luxardi,Sucharita Boddu,Nelvish N Lal,Yoshikazu Takada,Kit S Lam,Ruiwu Liu,R Rivkah Isseroff,Stephanie Le,Jan A Nolta,April M Kloxin,Emanual Maverakis

Therapeutic applications for mesenchymal stem/stromal cells (MSCs) are growing; however, the successful implementation of these therapies requires the development of appropriate MSC delivery systems. Hydrogels are ideally suited to cultivate MSCs but tuning hydrogel properties to match their specific in vivo applications remains a challenge. Thus, further characterization of how hydrogel-based delivery vehicles broadly influence MSC function and fate will help lead to the next generation of more intelligently designed delivery vehicles. To date, few attempts have been made to comprehensively characterize hydrogel impact on the MSC transcriptome. Herein, we have synthesized cell-degradable hydrogels based on bio-inert poly(ethylene glycol) tethered with specific integrin-binding small molecules and have characterized their resulting effect on the MSC transcriptome when compared with 2D cultured and untethered 3D hydrogel cultured MSCs. The 3D culture systems resulted in alterations in the MSC transcriptome, as is evident by the differential expression of genes related to extracellular matrix production, glycosylation, metabolism, signal transduction, gene epigenetic regulation, and development. For example, genes important for osteogenic differentiation were upregulated in 3D hydrogel cultures, and the expression of these genes could be partially suppressed by tethering an integrin-binding RGD peptide within the hydrogel. Highlighting the utility of tunable hydrogels, when applied to ex vivo human wounds the RGD-tethered hydrogel was able to support wound re-epithelialization, possibly due to its ability to increase PDGF expression and decrease IL-6 expression. These results will aid in future hydrogel design for a broad range of applications.
更新日期:2019-11-26

 

全部期刊列表>>
胸部和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
鲁照永
华东师范大学
苏州大学
南京工业大学
南开大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
广东实验室
南京大学
王杰
南科大
刘尊峰
湖南大学
清华大学
王小野
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug