当前位置: X-MOL 学术Batteries Supercaps › 论文详情
Highly Elastic Binders Incorporated with Helical Molecules to Improve the Electrochemical Stability of Black Phosphorous Anodes for Sodium‐Ion Batteries
Batteries & Supercaps Pub Date : 2019-11-07 , DOI: 10.1002/batt.201900136
Hongwei Zhang, Zhisheng Lv, Qinghua Liang, Huarong Xia, Zhiqiang Zhu, Wei Zhang, Xiang Ge, Pei Yuan, Qingyu Yan, Xiaodong Chen

Black phosphorus has aroused attention as an attractive anode for sodium‐ion batteries, because of its high theoretical capacity. Nevertheless, its practical application is hindered by the large volume expansion, which results in rapid capacity decay. Herein, we report that this challenge can be addressed by using an elaborately designed binder for the phosphorus‐based electrodes. The incorporation of amylose molecules with helical structures endows the linear polyacrylic acid polymer binders with extraordinary stretchability and elasticity under 400 % strain. When it is applied as a binder for black‐phosphorus‐based anodes for sodium‐ion batteries, the adhesion between the electrode and the current collector is much stronger (2.95 N) than that of the polyvinylidene difluoride (PVDF) binder based one (1.90 N). The electrode delivered a capacity as high as 1280 mAh g−1 at 200 mA g−1 after 300 cycles, which is better than the electrode with PVDF binder. Impressively, even after 1000 cycles, the electrode with our binder exhibits a capacity retention of 80 %. Our work sheds light on the significance of the rational design of effective binders and provides a new strategy to further improve the electrochemical performance of phosphorus‐based materials for battery applications, which can be added on directly to other new electrode materials development strategies.
更新日期:2019-11-07

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug