当前位置: X-MOL 学术Sci. China Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-atom electrocatalysis: a new approach to in vivo electrochemical biosensing
Science China Chemistry ( IF 9.6 ) Pub Date : 2019-10-21 , DOI: 10.1007/s11426-019-9605-0
Hanfeng Hou , Junjie Mao , Yunhu Han , Fei Wu , Meining Zhang , Dingsheng Wang , Lanqun Mao , Yadong Li

Modulation of interfacial electron transfer has been proven to pave a new approach to in vivo electrochemical monitoring of brain chemistry; however, designing and establishing highly efficient electrocatalytic scheme towards neurochemicals remain a long-standing challenge. Here, we find that recently established single-atom catalyst (SAC) can be used for catalyzing the electro-chemical process of physiologically relevant chemicals and thus offers a new avenue to in vivo electrochemical biosensing. To prove this new concept, we used Co single-atom catalyst (Co-SAC), in which the atomic active sites are dispersed in ordered porous N-doping carbon matrix at atomic level, as an example of SACs for analyzing glucose as the physiologically relevant model chemicals. We found that Co-SAC catalyzes the electrochemical oxidation of hydrogen peroxide (H2O2) at a low potential of ca. +0.05 V (vs. Ag/AgCl). This property was further used for developing an oxidase-based glucose biosensor that was used subsequently as a selective detector of an online electrochemical system (OECS) for continuous monitoring of microdialysate glucose in rat brain. The OECS with Co-SAC-based glucose biosensor as the online detector was well responsive to glucose without interference from other electroactive species in brain microdialysate. This study essentially offers a new approach to in vivo electrochemical analysis with SACs as electrocatalysts to modulate interfacial electron transfer.

中文翻译:

单原子电催化:体内电化学生物传感的新方法

界面电子传递的调制已被证明为脑化学的体内电化学监测铺平了一条新途径。然而,设计和建立针对神经化学的高效电催化方案仍然是一个长期的挑战。在这里,我们发现最近建立的单原子催化剂(SAC)可用于催化生理相关化学物质的电化学过程,从而为体内提供了新的途径电化学生物传感。为了证明这一新概念,我们使用了Co单原子催化剂(Co-SAC),其中原子活性位点在原子水平上分散在有序的多孔N掺杂碳基体中,作为SAC的示例,用于从生理学角度分析葡萄糖相关模型化学品。我们发现Co-SAC催化过氧化氢(H 2 O 2)处于低电位。+0.05 V(vs.Ag/AgCl)。此属性进一步用于开发基于氧化酶的葡萄糖生物传感器,该传感器随后用作在线电化学系统(OECS)的选择性检测器,用于连续监测大鼠脑中的微透析液葡萄糖。使用基于Co-SAC的葡萄糖生物传感器作为在线检测器的OECS对葡萄糖反应良好,而不受大脑微透析液中其他电活性物质的干扰。这项研究本质上为使用SAC作为电催化剂的界面电化学转移进行体内电化学分析提供了一种新方法。
更新日期:2019-10-23
down
wechat
bug