当前位置: X-MOL 学术ACS Nano › 论文详情
Scalable and Physical Synthesis of 2D Silicon from Bulk Layered Alloy for Lithium-Ion Batteries and Lithium Metal Batteries.
ACS Nano ( IF 14.588 ) Pub Date : 2019-10-25 , DOI: 10.1021/acsnano.9b06653
Yongling An,Yuan Tian,Chuanliang Wei,Huiyu Jiang,Baojuan Xi,Shenglin Xiong,Jinkui Feng,Yitai Qian

Owing to its distinctive structure and properties, 2D silicon (2DSi) has been widely applied in hydrogen storage, sensors, electronic device, catalysis, electrochemical energy storage, etc. However, scalable and low-cost fabrication of high-quality 2DSi remains a great challenge. In this work, a physical vacuum distillation method is designed to obtain high-quality 2DSi from a bulk layered calcium-silicon alloy. With this method, the lower boiling point calcium metal is evaporated to construct 2DSi and can be further recycled. The effect of vacuum conditions on morphology, components, and electrochemical properties is further explored. As an anode for lithium-ion batteries, the 2DSi delivers a stable cyclability of 835 mAh g-1 after 3000 cycles at 5000 mA g-1 (0.003025% capacity decay per cycle). The electrochemical performance enhancing mechanism is also probed. In addition, a 2D/2D flexible and binder-free paper by combining 2DSi with 2D MXene is constructed. As a lithiophilic nuclear agent for lithium metal anodes, the 2DSi can efficiently suppress the Li dendrite growth and reduce nucleation barriers, achieving a high Coulombic efficiency (98% at 1 mA cm-2, 97% at 2 mA cm-2) around 600 cycles and a long lifespan of 1000 h. The crystal growth difference of lithium metal on Cu foil and 2DSi is studied. This work may provide a pathway for green, low-cost, and scalable synthesis of 2D materials.
更新日期:2019-10-25

 

全部期刊列表>>
施普林格自然
欢迎访问IOP中国网站
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
复旦大学
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
刘冬生
试剂库存
down
wechat
bug