当前位置: X-MOL 学术J. Aerosol Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Examination of the impacts of ice nuclei aerosol particles on microphysics, precipitation and electrification in a 1.5D aerosol-cloud bin model
Journal of Aerosol Science ( IF 4.5 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.jaerosci.2019.105440
Y. Yang , J. Sun , Y. Zhu , T. Zhang

Abstract To study the impact of dust aerosol particles through their role as ice nuclei (IN) on the development of cloud microphysics and electrification, as well as on their contribution to the precipitation formation, we used a 1.5D detailed microphysics model to conduct sensitivity analysis of the Cooperative Convective Precipitation Experiment (CCOPE) case on 19 July 1981 in Miles City, Montana, USA. The simulated cloud microphysical properties demonstrate that the increase in IN concentrations enhances the number of ice particles produced by heterogeneous nucleation. As a result of increased ice particle formation, the enhanced ice growth via deposition in the Wegener-Bergeron-Findeisen mechanism, more extensive riming and thus an enhancement of ice aggregation, is primarily responsible for the increased numbers of large ice particles. The increased IN concentrations could result in earlier (∼6.5 minutes) and stronger (by a factor of 60) precipitation and greater raindrop mass due to enhanced ice phase process. The changes in microphysical processes resulting from increased IN concentrations lead to more large ice particles, which is primarily responsible for the enhanced charge separation process. Additionally, the charge density rises with the increased large ice particle concentrations and both of them reach their maxima at the same height.

中文翻译:

在 1.5D 气溶胶-云仓模型中检查冰核气溶胶粒子对微物理、降水和带电的影响

摘要 为了研究尘埃气溶胶粒子作为冰核 (IN) 的作用对云微物理和带电发展的影响,以及它们对降水形成的贡献,我们使用 1.5D 详细微物理模型进行敏感性分析1981 年 7 月 19 日在美国蒙大拿州迈尔斯城的合作对流降水实验 (CCOPE) 案例。模拟的云微物理特性表明,IN 浓度的增加增加了由异质成核产生的冰颗粒的数量。由于冰粒形成增加,通过 Wegener-Bergeron-Findeisen 机制中的沉积促进冰生长、更广泛的边缘以及冰聚集的增强,是大冰粒数量增加的主要原因。由于冰相过程的增强,IN 浓度的增加可能导致更早(~6.5 分钟)和更强(60 倍)的降水和更大的雨滴质量。由 IN 浓度增加引起的微物理过程的变化导致更大的冰颗粒,这是增强电荷分离过程的主要原因。此外,电荷密度随着大冰粒浓度的增加而增加,并且它们都在相同的高度达到最大值。它主要负责增强的电荷分离过程。此外,电荷密度随着大冰粒浓度的增加而增加,并且它们都在相同的高度达到最大值。它主要负责增强的电荷分离过程。此外,电荷密度随着大冰粒浓度的增加而增加,并且它们都在相同的高度达到最大值。
更新日期:2020-02-01
down
wechat
bug