当前位置: X-MOL 学术Int. J. Multiphase Flow › 论文详情
Modelling large scale airgun-bubble dynamics with highly non-spherical features
International Journal of Multiphase Flow ( IF 2.829 ) Pub Date : 2019-10-18 , DOI: 10.1016/j.ijmultiphaseflow.2019.103143
Shuai Li, Devaraj van der Meer, A-Man Zhang, Andrea Prosperetti, Detlef Lohse

A thorough understanding of the dynamics of meter-sized airgun-bubbles is very crucial to seabed geophysical exploration. In this study, we use the boundary integral method to investigate the highly non-spherical airgun-bubble dynamics and its corresponding pressure wave emission. Moreover, a model is proposed to also consider the process of air release from the airgun port, which is found to be the most crucial factor to estimate the initial peak of the pressure wave. The numerical simulations show good agreement with experiments, in terms of non-spherical bubble shapes and pressure waves. Thereafter, the effects of the port opening time Topen, airgun firing depth, heat transfer, and gravity are numerically investigated. We find that a smaller Topen leads to a more violent air release that consequently causes stronger high-frequency pressure wave emissions; however, the low-frequency pressure waves are little affected. Additionally, the non-spherical bubble dynamics is highly dependent on the Froude number Fr. Starting from Fr=2, as Fr increases, the jet contains lower kinetic energy, resulting in a stronger energy focusing of the bubble collapse itself and thus a larger pressure peak during the bubble collapse phase. For Fr ≥ 7, the spherical bubble theory becomes an appropriate description of the airgun-bubble. The new findings of this study may provide a reference for practical operations and designing environmentally friendly airguns in the near future.
更新日期:2019-10-19

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug