当前位置: X-MOL 学术J. Tissue Eng. Regen. Med. › 论文详情
A composite Gelatin/hyaluronic acid hydrogel as an ECM mimic for developing mesenchymal stem cell‐derived epithelial tissue patches
Journal of Tissue Engineering and Regenerative Medicine ( IF 3.319 ) Pub Date : 2019-12-02 , DOI: 10.1002/term.2962
Pramod Kumar, Sait Ciftci, Julien Barthes, Helena Knopf‐Marques, Céline Blandine Muller, Christian Debry, Nihal E. Vrana, Amir M. Ghaemmaghami

Here we report fabrication of Gelatin‐based biocomposite films and their application in developing epithelial patches. The films were loaded with an epithelial cell growth factor cocktail and used as an extracellular matrix mimic for in vitro regeneration of organized respiratory epithelium using Calu‐3 cell line and mesenchymal stem cells (MSCs). Our data show differentiation of Calu‐3 cells on composite films as evidenced by tight junction protein expression and barrier formation. The films also supported attachment, migration, and proliferation of alveolar basal epithelial cell line A549. We also show the suitability of the composite films as a biomimetic scaffold and growth factor delivery platform for differentiation of human MSCs to epithelial cells. MSCs differentiation to the epithelial lineage was confirmed by staining for epithelial and stem cell specific markers. Our data show that the MSCs acquire the epithelial characteristics after 2 weeks with significant reduction in vimentin, increase in pan cytokeratin expression, and morphological changes. However, despite the expression of epithelial lineage markers, these cells did not form fully functional tight junctions as evidenced by low expression of junctional protein ZO1. Further optimisation of culture conditions and growth factor cocktail is required to enhance tight junction formation in MSCs‐derived epithelial cells on the composite hydrogels. Nevertheless, our data clearly highlight the possibility of using MSCs in epithelial tissue engineering and the applicability of the composite hydrogels as transferrable extracellular matrix mimics and delivery platforms with potential applications in regenerative medicine and in vitro modelling of barrier tissues.
更新日期:2019-12-02

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug